
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

TRANSPORT TRAFFIC ANALYSIS FOR ABUSIVE
INFRASTRUCTURE CHARACTERIZATION

by

Le E. Nolan

September 2012

Thesis Advisor: Robert Beverly
Second Reader: Joel D. Young

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

19–9–2012 Master’s Thesis 2010-06-01—2012-09-21

Transport Traffic Analysis for Abusive Infrastructure Characterization

Le E. Nolan

Naval Postgraduate School
Monterey, CA 93943

N/A

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

This thesis investigates a novel approach to identifying discriminating features of communications involving abusive hosts.
The technique uses per-packet TCP header and timing features to identify congestion, flow-control, and other low-level
network and system characteristics. These characteristics are inherent to the poorly connected, under-provisioned, low-end,
and overloaded hosts or links typical of abusive infrastructure making them difficult for an adversary to manipulate.
Supervised classifiers use these features to infer likely abusive network hosts. Prior work investigates such features to
opportunistically identify inbound abusive traffic, this thesis seeks to perform active probing to generally characterize abusive
infrastructure. Our approach is IP address and content agnostic, and therefore privacy-preserving to permit wider deployment
than previously possible. On real-world traces obtained from accessing approximately 40,000 Alexa and 30,000
known-abusive web sites, we achieve a classification accuracy of 94 percent with a 3 percent false positive rate using only
transport features. Our results suggest that transport traffic analysis can block and identify, in real-time, abusive hosts unknown
to blocklists, and provide a difficult-to-subvert addition to existing schemes.

Network Security, Supervised Learning, Abusive Network Behavior

Unclassified Unclassified Unclassified UU 93

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

TRANSPORT TRAFFIC ANALYSIS FOR ABUSIVE INFRASTRUCTURE
CHARACTERIZATION

Le E. Nolan
Captain, United States Marine Corps

B.S., Georgia Institute of Technology, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2012

Author: Le E. Nolan

Approved by: Robert Beverly
Thesis Advisor

Joel D. Young
Second Reader

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

This thesis investigates a novel approach to identifying discriminating features of communica-
tions involving abusive hosts. The technique uses per-packet TCP header and timing features
to identify congestion, flow-control, and other low-level network and system characteristics.
These characteristics are inherent to the poorly connected, under-provisioned, low-end, and
overloaded hosts or links typical of abusive infrastructure making them difficult for an adver-
sary to manipulate. Supervised classifiers use these features to infer likely abusive network
hosts. Prior work investigates such features to opportunistically identify inbound abusive traf-
fic, this thesis seeks to perform active probing to generally characterize abusive infrastructure.
Our approach is IP address and content agnostic, and therefore privacy-preserving to permit
wider deployment than previously possible. On real-world traces obtained from accessing ap-
proximately 40,000 Alexa and 30,000 known-abusive web sites, we achieve a classification
accuracy of 94 percent with a 3 percent false positive rate using only transport features. Our
results suggest that transport traffic analysis can block and identify, in real-time, abusive hosts
unknown to blocklists, and provide a difficult-to-subvert addition to existing schemes.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Scope and Contribution . 1

1.2 Goals . 3

1.3 Major Results. 3

1.4 Structure. 4

2 Background 5
2.1 Introduction . 5

2.2 Prior Work . 5

2.3 Supervised Learning . 11

2.4 Evaluation Criteria. 14

2.5 Conclusion . 15

3 Experimental Methodology 17
3.1 Host Populations . 17

3.2 Data Collection . 19

3.3 Fetcher Validation . 21

3.4 Transport-Level Signal Analysis . 24

3.5 Prediction . 25

4 Results 29
4.1 Netflow Limitations . 29

4.2 Discriminative Features . 36

4.3 Classification Performance Results 41

4.4 Congestion Sensitivity . 44

vii

4.5 Overhead . 46

4.6 Conclusion . 47

5 Conclusion and Future Work 51
5.1 Conclusion . 51

5.2 Potential Mitigation Strategies for the Adversary 52

5.3 Future Work . 53

5.4 Summary . 55

Appendices 57

A Classification Analysis Results 57

B Congestion Experiment Results 67

List of References 69

Initial Distribution List 73

viii

List of Figures

Figure 3.1 Data Collection: Multiple sources of abusive and legitimate URLs are
probed by collection agents (Table 3.1) with varied connectivity. Con-
temporaneously, collection agents capture packets. 20

Figure 4.1 Redirection by per-device customization. 31

Figure 4.2 Frequency of redirection among web site populations, as observed from
four vantage points. 32

Figure 4.3 Redirection technique employed when a web site redirects. 32

Figure 4.4 Distribution of features available from Netflow evident in our datasets.
Flow duration, interflow duration, and flow size are largely similar, sug-
gesting that Netflow features are too coarse-grained and not sufficiently
discriminative. 35

Figure 4.5 Distribution of initial RTT from TCP three way handshake among differ-
ent website populations. 37

Figure 4.6 Distribution of RTT variance among different website populations. . . 39

Figure 4.7 Distribution of RTT variance among different website populations. . . 40

Figure 4.8 Test and Setup . 44

Figure 4.9 Transport traffic analysis performance as a function of background con-
gestion and link connectivity. 48

Figure 4.10 Transport traffic analysis performance as a function of time-of-day . . 49

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 3.1 Collection agents: a variety of vantage points and connectivity types that
impact traffic classification. 21

Table 3.2 Total Errors During Initial Connection 22

Table 3.3 URL populations for data collection 22

Table 3.4 Fetch exceptions per population, divided by initial URL (Init) versus all
URLs followed (Init+Redir). The majority of exceptions are connection
related. 23

Table 3.5 Exceptions by Type per Dataset . 23

Table 3.6 Transport Traffic Features . 26

Table 4.1 Pertinent Fields in Netflow v5 Record 30

Table 4.2 HTTP 3xx Redirection Status Codes 33

Table 4.3 Average Redirection Chain Lengths 34

Table 4.4 Continental distribution of host populations 38

Table 4.5 Transport traffic classification performance - C4.5 Decision Tree 42

Table 4.6 Transport traffic classification performance - Näive Bayes 42

Table 4.7 Transport traffic F-scores (harmonic mean of precision and recall) using
decision trees across vantage points and combinations of legitimate and
abusive sites . 43

Table 4.8 Transport traffic F-scores (harmonic mean of precision and recall) using
Näive Bayes across vantage points and combinations of legitimate and
abusive sites . 43

xi

Table 4.9 VP3 - Top 5 Features Used for Classification at Specified Upload Rates 46

Table A.1 VP1 Alexa Vs Externals: Confusion Matrix 57

Table A.2 VP1 Alexa Vs Externals: Accuracy Results 57

Table A.3 VP1 Alexa Vs Externals: Statistics . 57

Table A.4 VP1 Alexa Vs Spam: Confusion Matrix 57

Table A.5 VP1 Alexa Vs Spam: Accuracy Results 57

Table A.6 VP1 Alexa Vs Spam: Statistics . 58

Table A.7 VP1 Random Alexa Vs External: Confusion Matrix 58

Table A.8 VP1 Random Alexa Vs External: Accuracy Results 58

Table A.9 VP1 Random Alexa Vs External: Statistics 58

Table A.10 VP1 Random Alexa Vs Spam: Confusion Matrix 58

Table A.11 VP1 Random Alexa Vs Spam: Accuracy Results 58

Table A.12 VP1 Random Alexa Vs Spam: Statistics 59

Table A.13 VP2 Alexa Vs Externals: Confusion Matrix 59

Table A.14 VP2 Alexa Vs Externals: Accuracy Results 59

Table A.15 VP2 Alexa Vs Externals: Statistics . 59

Table A.16 VP2 Alexa Vs Spam: Confusion Matrix 59

Table A.17 VP2 Alexa Vs Spam: Accuracy Results 60

Table A.18 VP2 Alexa Vs Spam: Statistics . 60

Table A.19 VP2 Random Alexa Vs External: Confusion Matrix 60

Table A.20 VP2 Random Alexa Vs External: Accuracy Results 60

Table A.21 VP2 Random Alexa Vs External: Statistics 60

Table A.22 VP2 Random Alexa Vs Spam: Confusion Matrix 60

Table A.23 VP2 Random Alexa Vs Spam: Accuracy Results 61

xii

Table A.24 VP2 Random Alexa Vs Spam: Statistics 61

Table A.25 VP3 Alexa Vs Externals: Confusion Matrix 61

Table A.26 VP3 Alexa Vs Externals: Accuracy Results 61

Table A.27 VP3 Alexa Vs Externals: Statistics . 61

Table A.28 VP3 Alexa Vs Spam: Confusion Matrix 62

Table A.29 VP3 Alexa Vs Spam: Accuracy Results 62

Table A.30 VP3 Alexa Vs Spam: Statistics . 62

Table A.31 VP3 Random Alexa Vs External: Confusion Matrix 62

Table A.32 VP3 Random Alexa Vs External: Accuracy Results 62

Table A.33 VP3 Random Alexa Vs External: Statistics 62

Table A.34 VP3 Random Alexa Vs Spam: Confusion Matrix 63

Table A.35 VP3 Random Alexa Vs Spam: Accuracy Results 63

Table A.36 VP3 Random Alexa Vs Spam: Statistics 63

Table A.37 VP4 Alexa Vs Externals: Confusion Matrix 63

Table A.38 VP4 Alexa Vs Externals: Accuracy Results 63

Table A.39 VP4 Alexa Vs Externals: Statistics . 63

Table A.40 VP4 Alexa Vs Spam: Confusion Matrix 64

Table A.41 VP4 Alexa Vs Spam: Accuracy Results 64

Table A.42 VP4 Alexa Vs Spam: Statistics . 64

Table A.43 VP4 Random Alexa Vs External: Confusion Matrix 64

Table A.44 VP3 Random Alexa Vs External: Accuracy Results 64

Table A.45 VP4 Random Alexa Vs External: Statistics 64

Table A.46 VP4 Random Alexa Vs Spam: Confusion Matrix 65

Table A.47 VP4 Random Alexa Vs Spam: Accuracy Results 65

Table A.48 VP4 Random Alexa Vs Spam: Statistics 65

xiii

Table B.1 Results from Congestion Experiment 67

Table B.2 Congestion Experiment: Accuracy Results 67

Table B.3 VP1 - Top 5 Features Used for Classification at Specified Upload Rates 68

Table B.4 VP2 - Top 5 Features Used for Classification at Specified Upload Rates 68

Table B.5 VP3 - Top 5 Features Used for Classification at Specified Upload Rates 68

xiv

List of Acronyms and Abbreviations

3WHS Three-Way Hand Shake
ACK Acknowledgment Packet in TCP
ADSL Asymmetric Digital Subscriber Line
BGP Border Gateway Protocol
BSD Berkeley Software Distribution
CDN Content Distribution Network
DNS Domain Name Service
DoD Department of Defense
DOS Denial-of-Service
DSL Digital Subscriber Line
FN False Negative
FP False Positive
HTML Hypertext Mark-Up Language
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection System
IP Internet Protocol
IRC Internet Relay Chat
MTA Message Transfer Agent
NPS Naval Postgraduate School
NPV Negative Predictive Value
P2P Peer-2-Peer
PPV Positive Predictive Value
PTR Pointer Record for DNS
RTT Round Trip Time
SVM Support Vector Machine
SYN Synchronization Packet in TCP
TCP Transport Control Protocol
TLS Transport Layer Security
TN True Negative
TP True Positive
TTL Time To Live
URL Uniform Resource Locator
USG United States Government
VP Vantage Point

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgements

First and foremost, I would like to thank my loving and supportive wife Katie whose patience
and understanding through these past two years has been above and beyond anything I deserve.
Thank you for being there and providing me with the never ending support I needed to complete
my education at NPS.

I would like to express my deep and sincere gratitude to my advisor, Professor Robert Beverly.
Your guidance, mentorship, and patience during the past year has been instrumental for the
completion of this thesis. In addition, I would also like to thank Professor Joel Young who
spent endless hours reading and editing my thesis. I appreciate the sacrifice of so many of your
red pens to the pursuit of a better thesis.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

Abusive traffic runs rampant on the Internet, in the form of email, malware, vulnerability scan-
ners, worms, denial-of-service, drive-by-downloads, scam hosting, CAPTCHA solvers, and a
myriad of other exploits. This unwanted traffic is enabled by a wide array of infrastructure in-
cluding, but not limited to, complicit service providers, free web hosting providers, and botnets.
Complicit service providers are those providers, generally in poorly connected countries with
limited oversight, willing to host scammers, spammers, or to overlook malicious activity in.
Free web providers allow for quick and inexpensive setup of a large number of scam websites.
Even if some of the sites are blacklisted or shutdown to reconstituting new scam sites is trivial.
Finally, botnets are used to coordinate efforts in attacks, to host or proxy content from a large
number of machines, or to send out large volumes of spam.

Contemporary techniques for obtaining and using such infrastructure for abusive purposes are
becoming increasingly sophisticated and economically driven. For instance, spammers receive
monetary compensation for driving traffic to sites that sell knock-off jewelry, pornography, or
pharmaceuticals [1]. Their motivation to maximize profit equates to the number of people they
can direct to these types of scam sites. To enable their spread of spam they rely on mechanisms
like botnets.

A large body of prior work, discussed in detail in Chapter 2, explores detecting abusive network
behavior by, e.g., monitoring traffic content or communication patterns, while a variety of meth-
ods attempt to mitigate such traffic by, for example, distributing signature databases or tracking
IP reputation. Yet, despite years of commercial and research efforts, abusive traffic continues to
impart both direct and indirect damage on users, service providers, and the Internet.

1.1 Scope and Contribution
Our research investigates a new passive traffic analysis technique methodology for detecting
abusive infrastructure that does not rely on content inspection, sender reputation, or communi-

cation patterns – features that are brittle and readily evaded. Instead, we use transport-layer

traffic analysis, a technique that has shown promise in fighting abusive email [2–4].

In contrast to previous efforts [5] that leveraged aggregate traffic flow information such as that

1

embedded in Netflow [6] records, we find that fine-grained properties of the transport-layer
packet stream, such as TCP retransmissions, packet reordering, arrival jitter, congestion and
flow-control behavior, are fundamental sources of discriminative information that reliably char-
acterize abusive infrastructure.

Our key insight is two-fold. First, attackers have a basic requirement to source large amounts
of data, be it denial-of-service, scam-hosting, spam, or other malicious traffic. Second, the
infrastructure used to support abusive campaigns must be economically viable and willing to
support that traffic. As such, attack infrastructure is often comprised of botnets or complicit
service providers – infrastructure with distinguishable connectivity (e.g., low and asymmetric
bandwidths, congestion) and host (e.g., older computers and operating systems, high utilization)
characteristics. This basic weakness manifests in the resulting traffic stream. This thesis investi-
gates whether these fine-grained characteristics can be used to discriminate scam infrastructure
from legitimate infrastructure.

Further, we contend that transport characteristics form a difficult-to-subvert discriminator as the
features are related to protocols and mechanisms outside the control of the adversary. Crucially,
this discriminative information is available at any point along the traffic path, including not only
the network ingress, but also at the receiver and in the network core.

Because our novel method relies on previously ignored and logically orthogonal features of
network traffic, it might be usefully combined with existing classification and detection mech-
anisms to boost performance or reduce load. For instance, the transport traffic technique can be
employed as an early test before performing more costly deep packet inspection. Experimenta-
tion with combining our technique with existing mechanisms is left to future work.

In addition to providing a new method to detect abusive traffic, our approach imparts practical
benefits. In particular, transport traffic analysis is content and IP reputation agnostic – and is
therefore privacy-preserving – permitting use in countries with strong privacy-laws, or within
the network core. For example, Directive 2006/24/EC or commonly called "The Data Retention
Directive" [7] is a European Union Directive that outlines how data generated or processed using
electronic communications will be stored and accessed by security agencies. The directive
limits data from internet access to allocated IP address, user ID(s), name and address of the
person to whom the IP was allocated, and the date/time of login of the person of interest. The
content of the transmission and any identification of the destination of the communication can
not be retained [8].

2

1.2 Goals
This thesis explores using transport network traffic features to detect abusive infrastructure.
Toward this objective, we explore the following tasks and goals:

• Determine if how our approach using “fine-grained” characteristics from data calculated
over the TCP header data and packet timing is superior to the “course-grained” features
found in Netflow in the detection of abusive infrastructure.
• Develop a system to fetch data from a web server, while following URL redirection, and

catalog the traffic behavior.
• Discuss the difficulties and limitations in determining or following redirection.
• Re-examine prior work on detecting abusive infrastructure via redirection analysis, and

understand why redirection alone may not be a strong predictive feature.
• Develop a classifier using standard supervised learning algorithms to predict good traffic

flows from abusive traffic flows based TCP header and packet timing characteristics.
• Develop an experiment to show that our traffic analysis approach is able to detect abusive

infrastructure even when non-abusive congested flows are abundant in the training dataset
with our supervised learning classifier.
• Evaluate the performance of the classification system with respect to accuracy, precision,

and recall.
• Discuss what future work would benefit from our approach and what work can be done

to broaden our technique.

1.3 Major Results
This paper explores the power of transport-layer traffic analysis to detect and characterize scam
hosting infrastructure, including botnets. Our primary contributions include:

1. A high-speed passive traffic analysis method to detect abusive infrastructure. The tech-
nique is privacy-preserving and thus may be run both at the network edge and within the
core.

2. Performance analysis of transport-layer traffic features as a detection mechanism against
large, real-world data sets. We demonstrate that it is possible to detect abusive end-points
with a classification accuracy of up to 94%, with only a 3% false positive rate, based on
the fine-grain transport features alone.

3. A detailed analysis of the robustness of our approach. We show that it remains effective in

3

spite of network load fluctuations due to daily network load fluctuations and the presence
of traffic intensive P2P applications.

1.4 Structure
The remainder of this thesis is structured as follows:

• Chapter 1 discusses the difficulty in the detection of abusive infrastructure. It will also
introduce our technique, goals, and major results.
• Chapter 2 discusses the current research and operational practices in the field of detection

of abusive network infrastructure. In addition, we compare each of the current approaches
to our own. We also provide an overview of the machine learning techniques used in this
study.
• Chapter 3 discusses our data collection, code validation, and traffic signal analysis method-

ology.
• Chapter 4 discusses our results and the real world efficacy of transport traffic analysis.
• Chapter 5 contains a summary of the larger implications of our work as well as suggestion

for future research.

4

CHAPTER 2:
Background

2.1 Introduction
We define abusive infrastructure as any system that actively operates in a manner to support or
perform malicious activity. These malicious activities may be known or unknown to the admin-
istrator of the system. Examples include systems that are part of larger botnets used to propagate
spam, host malicious content, or even act as intermediate proxies for larger campaigns.

Effectively, Identifying abusive hosting infrastructure has become a major focus for academic
and private industry. Numerous research papers and experiments have been published detailing
different approaches to mitigating abusive traffic. Approaches include image shingling [9],
DNS analysis [5], command and control analysis [10], transport layer characterization [3], and
signature generation [11]. Many have shown great promise in both experimental and real-world
situations. In this chapter we discuss some of the more prominent work in this research space.
In addition, we provide a foundation on machine learning techniques and evaluation criteria
relating to our approach to characterization of abusive infrastructure.

2.2 Prior Work
The following sections summarize a cross-section of current research playing a significant role
in the development of the experiments contained in this thesis.

2.2.1 Image Shingling
In the space of understanding scam hosting infrastructure, Anderson et al. found that while a
large number of nodes participate in a scam, much of their functionality is devoted to obfuscat-
ing the true origin of the scam content. Anderson et al. first demonstrated that a large number
of nodes redirect or proxy traffic to a much smaller set of hosts [9]. Their work, SpamScatter,
follows URLs within spam messages to their final landing page where the page is rendered for
image shingling. Image shingling works by taking screenshots of each spam site. These screen-
shots are subdivided into fixed sized chunks (40 x 40 pixels) and then hashed. These hashed
chunks or "shingles" are then compared across all collected spam sites to find clusters of images
with similar "shingles". Based on the pre-defined cluster correlation metrics, the SpamScatter
method found approximately 2,000 scams on 7,000 servers.

5

Using the inferred behavior of the scam hosting infrastructure SpamScatter characterizes the
relationship of each host by scam type, location and blacklist inclusion. Andersen et al. found
that individual scams are generally hosted on a single machine while a large number of hosts
are used to advertise more robust scam campaigns. On the other hand, individual hosts were
frequently found to support more than one scam and even act as an intermediate proxy during
spam campaigns. They propose that by blacklisting or filtering a single host one could block
several campaigns.

We capitalize on the SpamScatter method of extracting scam URLs from known spam on a
honeypot, but augment this set with known malware and phishing sites. More importantly,
our use of the URLs is to capture traffic during each stage of web fetching and redirection
for the purpose of identifying discriminating features – a significantly more lightweight and
non-intrusive approach than image shingling.

2.2.2 Monetization of Spam Value-Chain
Levchenko et al. find that the large number of nodes funneling traffic to the smaller set of
nodes hosting content are often in fact part of an even smaller set of scam campaigns and
organizations [1]. They discovered this by successfully characterizing the end-to-end resource
dependencies and analyzing their relationships. Using three months of real-time source data
gathered from captive botnets, spam feeds, and spam-advertised URLs they discovered that 95%
of the spam represented three main types of goods: pharmaceuticals, replica luxury goods, and
counterfeit software. They then attempted to purchase over 100 items from these sites. From
the purchasing process they were able to get data about merchant bank affiliation, customer
service, and fulfillment processes. They found that out of 365 million URLs there were only
45 distinct affiliate programs. For all of their attempted purchases only 13 distinct banks were
used. They posited that the weak point in the scam chain is in the foreign credit card processing
at these banks.

Their data collection began by extracting URLs from full-message spam feeds, URL feeds,
and their own botnet-harvested spam. Then they extracted DNS information from each URL’s
domain and used custom web crawlers to visit each URL to retrieve HTTP behavior and landing
pages. They clustered the content of each landing page and labeled the type of goods sold. Using
the resultant information they were able to group sites by campaigns and by affiliate programs.
The researchers then attempted to purchase actual goods from each affiliate program.

6

While this recent work reveals additional important properties of scams, they only focused on
scams that involved selling products, typically those with questionable legality. Our traffic based
approach is more general, applicable to a variety of scams while Levchenko et al. focused on
the weak spot of the spam value chain only. We believe that our system is applicable to a variety
of scams, malware, phishing, and other types of abusive traffic including active attacks.

2.2.3 DNS Behavior
The Domain Name System (DNS) [12] translates internet names to addresses, and is as essential
to scams as it is to legitimate web sites. Significant prior work has analyzed various properties
of the DNS to infer malicious and abusive behavior.

For example, the DNS may be used in a scam to distribute load among a large set of member
bots by returning results for domain queries in a round-robin fashion. Not only does this reduce
load, it improves the robustness of the system by ensuring that any single bot that is reclaimed
or shut off does not impact the overall goal of serving scam content.

RB-Seeker [5] focuses on the detection of bots or botnets used in scams that attempt to obfus-
cate themselves from detection by using proxies and redirection through multiple compromised
hosts. Hu et al. sought to detect these redirection bots that are impervious to the botmaster’s
command and control channel by analyzing DNS behavior. Their experimental results showed
a high accuracy of detection with less than a 0.008% false positive rate.

RB-Seeker is compromised of 3 sub-systems. The first two sub-systems are used to accumu-
late domains participating in redirection or proxying: One obtains domains by following links
embedded in spam emails; the other uses hypothesis testing from data collected from a campus
edge router. The final subsystem takes the collected domains and uses a series of DNS probes
to characterize behavior of the abusive infrastructure. Using hyperplane decision functions also
known as support vector machines [13], the third sub-systems finally identifies potential mali-
cious hosts.

In our proposed system we do not look at behavioral attributes of DNS queries. Like RB-
Seeker, we do attempt to find discriminatory attributes of redirection but instead of cataloging
DNS queries, we look at transport traffic features for each HTTP request. In Chapter 3 we
discuss the results of our redirection attempts. Unfortunately DNS has become a poor identifier
as fast-flux botnets have grown in popularity. This is one of the main reasons why we believe
our system would be more effective overall.

7

2.2.4 Command and Control Behavior
Gu et al. created an approach to the detection of botnets using anomaly-based detection on two
typical types of command and control channel structures: IRC based and HTTP based [10].
BotSniffer was created so that prior knowledge of a bot or botnet is not required for the ef-
fectiveness of the system. Prior knowledge includes characteristics like command and control
signatures or known IP addresses of malicious servers. BotSniffer uses spatial-temporal corre-
lation techniques in their identification process.

There exists two main components to the BotSniffer system: First is the monitor engine which
sits on the perimeter of the network and generates connection records of suspicious command
and control protocols, detects activity response behavior, and message response behavior. Sus-
picious events then are sent to a correlation engine which does a group analysis using the au-
thors’ spatial-temporal methodology. Second is the spatial-temporal correlation engine which
leverages how IRC and HTTP communications are commonly used in previously discovered
botnets. Using this knowledge, Gu et al. created their correlation engine to generalize these
two types of communication techniques into two algorithms which they call “Response-Crowd-
Density-Check” and “Response-Crowd-Homogeneity-Check.”

BotSniffer’s experimental results showed a 100% success rate in finding botnets and saw only
a 0.0016 false positive rate (11 out of 6,848 servers) [10]. Unfortunately while HTTP and IRC
were the standard for many years, recent research has shown that peer-to-peer has become the
new standard for command and control communications. This distributed type of system was
outside of the scope of their paper and was cited as future work.

As noted above, Current botnets have evolved passed IRC and HTTP communications channels
into peer-to-peer communications making botnets harder to identify. Unlike BotSniffer, our
approach does not require knowledge of the command and control channel.

2.2.5 Signature-Based Detection
Signature-based detection is commonly used in worm and virus detection systems. Xie et al.

extended this approach into a system called “AutoRE.” [11] AutoRE focuses on characterizing
spamming botnets by creating regular expression signatures derived from URLs mined in spam
payloads. In addition, AutoRE groups spam emails into spam campaigns. Spam campaigns are
focused on targeted spam efforts on a single product or service.

AutoRE has three modules: a URL pre-processor, a group selector, and a regular expression

8

generator. The URL pre-processors mines URLs from spam and then groups them based on
their web domain. Group selection is used to identify specific spam campaigns. This is accom-
plished by greedily associating URLs together via temporal correlation. Finally, given a set of
URLs pertaining to a given domain, regular expressions are created.

The regular expressions are created by constructing keyword-based signature trees, generat-
ing candidate expressions, and then evaluating the expressions to ensure specificity. Xie et

al. found that their system successfully identified 7,721 botnet-based spam campaigns with
340,050 unique botnet host IP addresses in their 3 month sample of spam directed toward the
Hotmail web-mail service. Their false positive rate was between 0.0011 and 0.0014 [11].

Unlike autoRE, our system is content agnostic and does not rely on brittle heuristics to de-
termine malicious activity. AutoRE only looks at the URL of a domain and disregards other
information available in the traffic streams. Our system on the other hand focuses on the actual
behavior of the network traffic and by avoiding content analysis preserves privacy.

2.2.6 Graph Theoretic Approaches
Zhao et al. tackled the difficult problem of identifying bots used to signup for free web mail
from major providers as part of scam campaigns [14]. By only sending a few messages from
each account on well-known and trusted providers they attempt to evade detection. Their system
BotGraph detects such accounts by constructing large user-user graphs and looking for tightly
connected subgraph components.

BotGraph is based on the assumption that bot-users share similar IP addresses when logging in
and sending emails from web based accounts. BotGraph leverages this type of sharing to detect
botnets. To enable the massive computation overhead needed to mine the log data of major web
email services Zhao et al. developed an efficient distributed system to construct and analyze
large graphs. In one of their experiments they used 240 machines to analyze a 220 GB Hotmail
log in 1.5 hours. In another experiment on 2 months of Hotmail logs (450 GB), BotGraph was
able to identify 26 million bot-accounts with a false positive rate of 0.44% [14].

Their methodology focuses on the origination point of spam as discoverd by mining web email
logs and does not attempt to infer any information from the hosting infrastructure traffic. Unlike
our approach, theirs requires significant time and resources to identify suspicious bots, our
approach is relatively light-weight in both time and resource costs.

9

2.2.7 Behavior Clustering
The approach created by Gu et al., called BotMiner, is based on the analysis of the communi-
cation structure found in network traffic [15]. Combined with IDS-like functionality at higher
layers, BotMiner clusters hosts with similar flows where the intuition is that bot hosts have
communication patterns differing from legitimate hosts. BotMiner generalizes the essential
properties of botnets in an effort to detect bots without a priori knowledge of the botnet itself.

BotMiner uses cross-clustering correlation from two network monitors called the “A-plane”
and “C-plane.” The “A-plane” is responsible for detecting suspicious activity (scanning, spam,
binary downloads, and exploits) and the “C-plane” is responsible for logging network flows.
Both monitors extract features from their respective data and by using clustering algorithms,
they attempt to find groups of machines with similar behavior. The final step is cross-plane
correlation analysis to cross-checks the two planes and find intersections representing evidence
of botnet activity.

BotMiner was tested and evaluated against 8 known botnets consisting of 4 IRC-based, 2 HTTP-
based, and 2 P2P-based nets. These botnets were overlayed over normal network traffic. The
authors then took traffic traces of a random mixture of hosts consisting of both normal and bot
based behavior. They tested BotMiner daily over a 10 day period and were able to successfully
detect all 8 botnets. 6 of the 8 botnets were detected 100% of the time while the other two were
detected at a rate of 99% and 75%. The overall false positive rate was 0.003%.

Unlike BotMiner, our approach for identifying abusive infrastructure is independent of the com-
munication structure of the malicious activity. Our focus is on the properties of the traffic
streams and we ignore application-layer content and IP addresses entirely. Our system attempts
to minimize all privacy concerns yet is effective enough to discriminate abuse on the network.

2.2.8 Transport Layer Characteristics
Rather than relying on IP reputation or content inspection, Beverly et al. created a spam de-
tection technique using discriminating features inferred from TCP headers and packet timings
for each communication flow [3]. For spammers to be successful they must send large vol-
umes of emails causing contention and congestion on a network. These effects are exaggerated
for many botnet hosts which reside on residential broadband networks where there are large
gateway buffers and asymmetric bandwidth.

Transport-layer properties like lost segments, round trip times, and jitter variance exhibit be-

10

havior that differ from normal usage by ordinary user. Using statistical analysis of a variety
of transport-layer properties Beverly et al. demonstrated that an auto-learning classifier can
distinguish spam email from normal email with a accuracy rate of over 95%.

The authors’ research is the most closely related to our proposed system. Whereas this tech-
nique has been applied to the reception of abusive messages, we investigated the logical dual:
whether traffic features can identify host serving abusive content. As we will demonstrate, the
technique generalizes well, but hones in on substantially different features from those of spam
identification.

2.3 Supervised Learning
Many abusive infrastructure detection systems rely on machine learning techniques [16]. In
our research, we employ supervised learning to determine if a network TCP flow is abusive or
not. Supervised learning is a task of machine learning where an inferred function or classifier
is created [17]. The supervised learning (unlike unsupervised learning), model takes in labeled
training data with two parts: a vector of (hopefully) discriminating values and a label. After a
supervised learning algorithm (e.g. Näive Bayes) processes the training data the classifier then
can predict the correct label for a new input vector with a certain degree of accuracy. The accu-
racy of the classifier can be tested by using statistical analysis like k-fold cross-validation [18].

The vector of discriminating values for our training data consists of features extracted from
the data we mined from the TCP headers and packet timings from individual network flows.
These 19 features are outlined in 3.4. The label for each vector designates the vector as either
malicious or good. In the context of this research we employ Näive Bayes, and C4.5 which are
well-known supervised learner algorithms. In our research we used a 10-fold cross-validation
test to validate the accuracy of our technique.

2.3.1 Näive Bayes Classifier
The Näive Bayes classifier [17] is based on Bayes’ theorem and the assumption that each fea-
ture is conditionally independent of every other feature, given the class variable C. Baye’s the-
orem [19] is defined as:

P(C = ck|
−→
F =

−→
f) =

P(
−→
F =

−→
f |C = ck)P(C = ck)

P(
−→
F =

−→
f)

,

11

where C is the class variable and ck is the variable for each individual flow labeled as “legiti-
mate” or “abusive”.

−→
F is the feature vector and

−→
f represents an individual flow vector where

f1, ..., fn are the values of the attributes. Applying the independence assumption:

P(
−→
F =

−→
f |C = ck) = ∏

i
P(
−→
Fi =

−→
fi |C = ck),

and by using the maximum a-posteriori probability (MAP), the basic decision rule can be de-
fined as follows [20]:

c = classi f y(f1, f2, ..., fn)

= argmax
k=(abusive,legitimate)

(P(C = ck|
−→
F =

−→
f))

= argmax
k=(abusive,legitimate)

(
P(
−→
F =

−→
f |C = ck)P(C = ck)

P(
−→
F =

−→
f)

)

= argmax
k=(abusive,legitimate)

(
P(C = ck)∏

i
P(
−→
F =

−→
f |C = ck)

)

The prior probability P(C = c) is given by the ratio of the number of examples that belong in
class c to the total number of examples. The product of the conditional probabilities depends
on the feature types, whether they are discrete or continuous. If the features are discrete, the
conditional probability is the ratio of the number of vectors Fi that have value fi and belong to
class ck to the total number of vectors that belong to class ck. In the case of continuous values,
we assume that they follow a normal distribution and we have [17]:

P(
−→
F =

−→
f |C = ck) = g(χi; µi,ck,σi,ck),

where

12

g(χ; µX ,σX) =
1√

2πσ
e−

(x−µ)2

2σ2

is the normal (Gaussian) distribution.

2.3.2 C4.5 Decision Trees
Decision trees are used in machine learning as a classification model that attempts to predict an
output value of a target item based on a set of observations or input variables. A specific type of
decision tree which is commonly used in supervised learning is called C4.5. C4.5 [21] creates
a decision tree classifier using what is called information entropy. C4.5 was developed by Ross
Quinlan and is an extension of his earlier ID3 algorithm.

The algorithm evaluates each feature vector based on the following strategy: initially, it selects
the best feature as the root of the decision tree. For every different value of the feature, it creates
a descendant node, which consists of all the vectors that contain the specific feature value. This
whole process is repeated recursively for each feature node in the decision tree. The process
ends when one of the following conditions is met:

1. all vectors of the current node belong to the same class or
2. all features are used

How well the decision tree performs depends on the selection process of the best feature. A
suitable measure for the evaluation of the features, and therefore for the selection of the best
feature, is the information gain (IG) of an attribute A [17]. If we define S as the set of training
examples, then the mathematical representation of IG is given by the following formula:

IG(A) = Entropy(S)− ∑
v∈Values(A)

|Sv|
|S|

Entropy(Sv),

Entropy(S) =−
c

∑
i=1

pi log2 pi,

Values(A) is the set of attribute A values, Sv is a subset of S that contains the examples with
attribute A having value v, and pi is the ratio of the number of examples that belong to class i
to the total number of examples. Entropy represents the amount of information that is provided

13

by the attribute and, in information theory, is measured in bits [17]. Our goal is to maximize
the IG of the selected attribute by minimizing the entropy of Sv, or, in other words, by reducing
the number of bits. Information gain, however, has the disadvantage that it selects attributes
with a large set of values. To overcome this shortcoming, Quinlan [22] suggests utilizing the
information-gain ratio, which is formalized as follows:

GR(A) =
IG(A)
IV (A)

,where

IV (A) =−
|A|

∑
i=1

|Si|
|S|

log2
|Si|
|S|

,

and Si are the subsets of S that contain attribute A with value i. So, again, our goal is to find the
attribute that maximizes the above ratio.

2.4 Evaluation Criteria
Once the classifiers are trained, we must have a way to evaluate their performance and compare
those of different experiments. Standard performance metrics include precision, recall, F-score,
and accuracy.

Accuracy is the rate of correct predictions made by the classifier over a data set. It is obtained
by dividing the number of correctly classified flows by the total number of flows in the set.

Precision measures the proportion of items correctly classified as belonging to a particular class,
i.e. the number of items correctly labeled as a class divided by the total items labeled as that
class.

Recall measures the proportion of items belonging to a particular class that the classifier actually
identified, i.e. the number of items correctly labeled as a class divided by the total number of
those items in the data set. The formulas for precision and recall follow:

precision =
T P

T P+FP

14

recall =
T P

T P+FN

Where TP is true positive, the number of items correctly assigned to a class. FP is false positive,
the number of items incorrectly assigned to a class. FN is false negative, the number of items
of one class identified as a member of another class.

F-score combines these two measures into one evenly weighted metric. This prevents the ex-
perimenter from making design adjustments that favor one measure or another. F-score is the
harmonic mean of the precision and recall:

F = 2
(

precision× recall
precision+ recall

)

2.5 Conclusion
In this chapter we summarized a few of the prominent research approaches to the detection
of abusive network behavior. We have also provided background information on supervised
learning and two classification algorithms (Näive Bayes and C4.5 Decision Trees) that were
used during our research. In addition, we discussed the foundation of how we evaluated our
classifier. In the next chapter we will discuss in detail our experimental methodology to the
detection of abusive infrastructure.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

CHAPTER 3:
Experimental Methodology

This chapter describes our experimental methodology designed to test our hypothesis that we
can use fine-grained properties of the transport-layer packet stream in conjunction with super-
vised learning-based classification to find abusive network infrastructure. We begin by describ-
ing how we obtained our host population dataset. Next we show how we captured our traffic
flows from this dataset from multiple vantage points. Then we discuss our transport traffic
classification procedure focusing on how we build our supervised- based classification model.
Finally we discuss how we evaluated our technique using statistical analysis.

3.1 Host Populations
To use a supervised learning-based classifier, we need to collect a set of training data where the
label of the input feature vector is known to be either abusive or non-abusive. Our features are
the set of TCP and packet timing characteristics mined from HTTP flows of known domains.
To obtain this dataset we collected information from the following sources:

1. Spam Honeypot
2. External Known Malicious Domains and Phishing Sites [23] [24] [25]
3. Alexa [26]

Our first population of domains were mined from a Spam honeypot that we managed from the
Naval Postgraduate School. This honeypot did not have any externally registered valid email
accounts, therefore any emails received by the honeypot are considered abusive in nature. Each
received message is processed to extract all embedded URLs. To disguise itself as legitimate
traffic, many emails embed images and URLs from legitimate websites. In addition, to minimize
bandwidth costs by sending massive amounts of emails spammers use hypertext references to
external images and style sheets. To ensure that we capture only URLs of abusive hosts we
check a whitelist before flagging a URL as abusive. The whitelist is a manually evolving list of
URLs deemed to be legitimate but found in spam messages. Once the URL is determined to be
abusive its information is saved into a database (MySQL) for further experimentation.

Abusive hosts encompass more than just spamming and scamming infrastructure. We also
test on domains from two well-known malicious domain sources: phishtank.com [25] and

17

malwaredomains.com [23]. phishtank holds a repository of current malicious phishing do-
mains. Phishing is fraudulent attempting to get one to provide personal information, including
but not limited to, account information. This is different from regular spam which generally
are unsolicited commercial email. malwaredomains maintains a listing of domains known to
be used to propagate malware and spyware. Both phishtank and mawlaredomains update their
repository information on an hourly and daily basis respectively. Before deploying domains
and hosts to the data collection portion of the experiment, we ensure that we have the most
up-to-date set of information to decrease the possibility that domains are no longer active. In
Section 3.2 we discuss in more detail the actual number of domains that were still active during
our experiments.

From the spam honeypot we were able to obtain over 1.4 million URLs over a period of a few
weeks. We compacted this number down to 9,679 fully unique URLs by removing duplicate
domains and whitelisted URLs. The whitelists were used because in many cases spam incorpo-
rates legitimate URLS. Next, combining the phishtank and malwaredomains URLs resulted in
a total of 20,013 unique abusive URLs. We found that many of the URLs occurred in both lists
and removed any duplicates as necessary. The spam list and the combined phishtank/malware
list (which we title as the “external” list) make up our abusive host “ground truth” domains.

For the legitimate hosts we use a subset from the listing of most visited websites reported by
Alexa, subsidiary company of Amazon.com that maintains analytics of web traffic. Alexa’s
estimates and ranking system are based on internet users using Alexa’s downloadable toolbar
application (reported to be in the millions of users) [26]. Using the number of unique users who
visit a site per day and the total number of user requests for a specific site gives Alexa a realistic
sample of all internet users.

We created two separate lists from the Alexa domains. The first list is the top 20,000 most
popular websites. The second list is made from a random sampling of 20,000 hosts from their
top one million websites. Random sampling yields a list of legitimate hosts residing on in-
frastructure of varying capabilities rather than the top sites that are generally run from major
corporations with large hosting capabilities. The random selection gives a robust view of the
types of websites users comes into contact with on a daily basis.

18

3.2 Data Collection

For each host in the spam honeypot, malware lists, and Alexa lists, we capture all packets
in the network flows generated by visiting that host. We implement a custom URL content
fetcher and redirection follower. This custom fetcher program was created in the uses standard
HTTP request protocols emulating a conventional web browser. The program disguises its
user-agent as “Mozilla/5.0 (Windows NT 6.1; WOW64)” in case any web server or proxy
is filtering requests that it perceives as non-human initiated such as a web crawler. As the
fetcher initiates each connection we record network flow information using tcpdump and save
the information in a standard PCAP file. In addition, we save identifying flow information (e.g.
IP,Port,Redirection Parent) in a MySQL database for tracking of redirection chains for further
analysis. Furthermore, we ignore all robot exclusion tags.

Figure 3.1 illustrates precisely how our data collection process works. We begin by using our
customized URL content fetcher and follower. We follow each URL in our domain corpus to
its logical end which includes following any redirection. We traverse the following types of
redirection:

1. 3XX HTTP “content moved” status codes
2. HTML meta-refresh
3. HTML frames
4. Non-obfuscated JavaScript

The fetcher respects cookies and supports Transport Layer Security (TLS) when required, al-
lowing us to successfully follow redirection chains where abusive hosts attempt to employ these
for filtering. For example, we found a few cases where access to a final landing web page in a
URL redirection chain requires a cookie to be set from the previous page in the chain. If a user
were to directly access the final landing page they would be either given an error status code, or
redirected somewhere else. Our JavaScript redirection covers traditional calls to:

• window.location

• location.href

• location.replace

• window.navigation

• self.location

• top.location

19

NPS

Honeypot

External:

malwaredomains

phishtank

Alexa

Spam URL Extraction

URL Filter

 DB

Agent
Collection

Agent
Collection

Agent
Collection

Agent
Collection

pcap

pcap

pcap

pcap

Sites

Figure 3.1: Data Collection: Multiple sources of abusive and legitimate URLs are probed by
collection agents (Table 3.1) with varied connectivity. Contemporaneously, collection agents
capture packets.

Where JavaScript was intentionally obfuscated, we do not follow any redirection. We discuss
the prevalence of obfuscation in Section 3.3.

From January 25 to 27, 2012, we deployed our fetcher on four separate collection agents, run-
ning FreeBSD and Linux TCP stacks, termed “vantage points.” Each “vantage point” inde-
pendently fetched each known URL from our collected domain list. As detailed in Table 3.1,
each agent has different network connectivity and physical attachment points. In addition to
examining detailed characteristics of the network traffic stream, including congestion and de-
lay effects, the collection agents are also span three orders of bandwidth magnitude, different
multiplexing technologies, located on both east and west coasts of the United States, and are
connected via academic, commercial, and residential ISPs. We examine the relative perfor-
mance of each collection agent and quantify our system’s sensitivity to legitimate sources of
congestion in Section 4.4.

During the actual collection process the network packets are saved into bidirectional flows ac-
cording to distinct tuples of:

• destination IP address
• ephemeral source TCP port

Our flow definition differs slightly from common usage (e.g., Netflow) as our collection agent’s
IP addresses and remote TCP port are fixed. As flows complete, either via an explicit TCP

20

Table 3.1: Collection agents: a variety of vantage points and connectivity types that impact
traffic classification.

ID Connectivity Location
VP1 1.5Mbps Commercial CA, USA
VP2 University 1Gbps MA, USA
VP3 12/20Mbps Residential CA, USA
VP4 University 1Gbps MA, USA

termination or via a 300 second timeout, we extract transport-layer features. The features that
are extracted are listed in Table 3.6. By recording the ephemeral port during the content fetch,
we match flows to their respective content.

We found that many of the domains extracted from the spam honeypot and external abusive
domains found in the “external” list proved to be relatively unreliable; Approximately 50–70%
of the URLs that we attempted to fetch were successful. The results are summarized in the
“yield” row in Table 3.3. The final row in Table 3.3 shows the total number of fetches per
population when including redirection chains.

3.3 Fetcher Validation
To validate that our custom fetcher is following URLs and capturing content correctly we record
all exceptions the program encounters. The most common types of exceptions we found were
involved in the initial three way handshake between the vantage point and the hosting server
and include the following:

• timeouts
• DNS failures
• connection resets
• connections refused
• route failures
• redirection errors

Table 3.2 is a list of the percentage of the total errors that occurred during the initial connection.

Most exceptions we encounter are the result of connection failure. Table 3.4 breaks down
the percentage of failed fetches per population by initial URL fetch in a redirection chain and
total fetches of all URLs. For example, out of all of the attempted fetches from the Honeypot

21

Table 3.2: Total Errors During Initial Connection

Dataset Error Percentage
Alexa 90%
Alexa Random 94%
Honeypot 93%
External 99%

Table 3.3: URL populations for data collection

Alexa Abusive
Top Random Honeypot External

Count 20K 20K 1.4M 20K
Unique 20K 20K 9.7K 20K
Yield 19.3K 19.1K 6.5K 9.4K
Total
Fetches

27.9K 25.3K 7.9K 12.5K

population, only including the initial URL in redirection chain, 31% failed and 3% of the total
failures were non-connection related. For total URLs fetched, 30% were failures and 3% were
non-connection related. This results show that approximately 90% of the exceptions from the
Honeypot are connection based.

Examples of non-connect exceptions include:

• bad HTTP status codes
• missing or blank redirection locations
• malformed redirects

Table 3.4 further divides the frequency of connection exceptions among our URL populations
for both the initial URL, as well as the initial and all URLs along the redirection chain. We
omit any fetches that result in an exception from our analysis. Surprisingly, we observe 751
exceptions among the Alexa top 20,000 sites. A full list of the exception counts for each dataset
are found in Table 3.5.

The random selection of 20,000 Alexa hosts reveals roughly double the exception error rate, an
unsurprising result as we expect more popular sites to be hosted on more reliable infrastructure.
The exception rate among the honeypot and external URL populations is much higher, as is
expected for abusive, unreliable infrastructure. Most importantly, the frequency of exceptions
stemming from causes other than failed connection is under 1% for all populations except the

22

Table 3.4: Fetch exceptions per population, divided by initial URL (Init) versus all URLs fol-
lowed (Init+Redir). The majority of exceptions are connection related.

Name All
(Init)

All
(Init+
Redir)

Non-
Connect
(Init)

Non-
Connect
(Init+Redir)

Alexa 4% 3% 1% 1%
Alexa
Random

8% 7% 1% 1%

Honeypot 31% 30% 3% 3%
External 53% 46% 1% 1%

honeypot URLs where the failed connection rate is under 3%. These results reinforce our
confidence that the customized fetcher is working as designed.

Table 3.5: Exceptions by Type per Dataset

Exception Alexa Alexa Random Honeypot External
Timeouts 357 479 855 1,680
DNS Failures 327 423 2,279 8,674
Connection
Resets

16 13 0 97

Connection
Refused

20 29 47 176

Route Failures 11 1 4 21
Redirection
Errors

20 13 69 28

Total 751 958 3,254 10,676

To further validate our data collection system we perform manual, random sampling. We take a
sample of 250 URLs from each of the four datasets in Table 3.3 (1000 random samples in total)
and perform a side-by-side comparison between our fetching engine and a default Firefox 10.0
web browser with JavaScript enabled. We analyze URLs and content of the final page in the
redirection chain for both the fetcher engine and the web browser. In all cases, we accurately
capture instances where no redirection occurred and in cases where redirection occurred due to
HTTP status codes or HTTP header location changes.

The one area we did find inconsistencies was when JavaScript was used for redirection. After
noticing inconsistencies we randomly sampled another 350 domains from the Honeypot/Malware
list but this time looking at domains only flagged as having JavaScript redirection. We found that
20 (6%) of the JavaScript sites inspected were obfuscated using techniques such as hex value

23

replacement and text splitting by using variable manipulation. In general, however, JavaScript
in abusive sites was either, clearly redirection, or used for other functions. In Alexa sites we
manually sampled, we found no obfuscation for sites using JavaScript for redirection.

3.4 Transport-Level Signal Analysis
The intuition behind our transport traffic analysis technique is simple. Operators of abusive
infrastructure and the perpetrators of various scams are faced with economic and policy con-
straints: they must find hosts that will support their abusive traffic at a cost that allows them
to be profitable, or to otherwise achieve their objectives. The resulting abusive infrastructure is
frequently either compromised hosts, for instance, rent-per-hour botnets, or complicit service
providers. In either case, these hosts are typically poorly connected, under-provisioned, and
overloaded (in terms of either communication, computation, or both).

For example, botnet hosts can be unwittingly compromised home users’ computers. That is res-
idential machines without enterprise-level infrastructure. These hosts are resource constrained,
both in terms of available computational power and bandwidth. Moreover, these residential in-
ternet connections typically have asymmetric bandwidth, e.g., aDSL or cable modem-links that
convey distinct signatures to their traffic stream. The major reason for the asynchronous band-
width is generally due to user requirements. The common usage for the internet is to download
information like email, news, music, and video. The bytes required for the request is tiny rel-
ative to the bytes to be downloaded. Similarly, complicit service providers willing to support
abusive infrastructure are frequently located in countries and at companies with poor internet
connectivity, low bandwidth, and with limited peering.

The fact that botnets must send large volumes of traffic, whether spam messages, dictionary at-
tacks, vulnerability scans, scam website hosting, or denial-of-service attack packets exacerbates
the problem of poor connectivity. As malicious traffic congests available capacity, local queues
form in the host operating system and residential gateway. In fact, the local buffer sizes on resi-
dential cable and DSL modems is quite large. This phenomenon is called “bufferbloat” [27]. It
is reasonable to expect:

• TCP timeouts
• retransmissions
• resets
• out-of-order packets

24

• highly variable round trip times (RTT) estimates

This traffic signature is distinguishable using statistical learning techniques. Table 3.6 details the
complete set of features we collect on a per-flow basis. Some of the features are bidirectional,
for instance packets and bytes, while others only have meaning relative to the remote host, e.g.,
receiver window. The last three features, TTL value, IP “don’t fragment,” and SYN/ACK size
correspond to features typically used for passive host operating system inference [28]. While we
collect these values, we omit them from any analysis in this paper as these are easily mutable and
less fundamental than the other features which are more difficult for abusive hosts to subvert.

Likewise, we do not make use of reputation measures such as IP addresses, or perform inference
over IP addresses, which are known to be unreliable [29]. Further, our technique does not
require deep-packet inspection, a costly measure with privacy implications. Instead, using a
transport-level approach imparts several important benefits:

1. By analyzing the transport traffic stream, our technique is privacy-preserving and there-
fore may be run in the network core rather than at the edge. Privacy-preservation is crucial
to many environments, e.g., satellite networks, and in many political settings, e.g., current
European privacy laws.

2. The ability to run in the network core has the potential to stanch malicious traffic before
it saturates access links.

3. This technique can serve as a fast discriminator for in-core use, or as a distinct signal for
boosting edge classification performance.

4. By exploiting the root-cause of the attacks, the traffic itself, operators of abusive infras-
tructure must either acquire more nodes or send traffic more slowly; either of which
imposes cost.

3.5 Prediction
Our extracted transport traffic features are used as the input to traditional supervised, train-then-
test, learning algorithms. We describe the various methods to form predictions over the traffic
features here.

Classification and Feature Selection
The result of our feature extraction process is a per-flow (fi) feature vector xi containing each of
the values described in Table 3.6. We use two well-known statistical learning algorithms: Naïve
Bayes, and C4.5 Decision Trees. These two algorithms are discussed in detail in Section 2.3.1

25

Table 3.6: Transport Traffic Features

Feature BiDir Description
Pkts Y Packets
Bytes Y Bytes
Rxmits Y Retransmissions
RSTs Y Packets with RST bit set
FINs Y Packets with FIN bit set
RwndInit N Initial receiver window
RwndMin N Minimum receiver window
RwndAvg N Average receiver window
Rwnd0 N Times zero window advertised
MaxIdle N Max idle time between pkts
3WHS N Initial round trip time estimate
Dur N Total flow duration
RTTVar N Variance of per-segment RTT
JitterVar N Variance of inter-packet delay
TTL N IP Time-to-live (fingerprint)
DF N IP Don’t fragment (fingerprint)
SAsize N TCP SYN/ACK pkt size, w/opts

and Section 2.3.2. We use these algorithms as implemented in a third party software suite,
Orange [30]. Orange is an open source data mining software suite that with a native Python
language interface.

To validate results from our classifier, we employ 10-fold cross-validation in all experiments.
The randomized flow features are partitioned into ten sets. Nine of the ten sets serve as training
to build the learned model, while testing is performed on the held-out fold for validation. The
prediction accuracy from each fold combination is averaged to provide a final performance
number. In this way, we ensure that our results generalize without respect to a particular training
and testing split or the composition of a particular training set.

Often, one wishes to understand which feature is most discriminative power that is which prop-
erties of the traffic stream are predictive. Some learning algorithms, such as decision trees,
naturally provide the best features as part of their output. In our experiments we make use
of the Relief algorithm [31] for best feature selection. This is the standard algorithm feature
selection algorithm in the Orange data mining software [30].

26

Performance Metrics
We use standard classification performance metrics. We call an abusive host “positive” and
a legitimate host “negative” to indicate disposition. Correct predictions result in either a true
positive (t p) or true negative (tn). An abusive host that is mislabeled as legitimate produces a
false negative (f n), while a legitimate host misclassified as abusive produces a false positive
(f p). Note that false positives are particularly onerous as there is a high cost to blocking or
filtering legitimate sites. As performance metrics, we consider accuracy (Acc), precision (Pre),
recall (Rec), false positive rate (FPR), and F-score:

Acc =
t p+ tn

t p+ f p+ tn+ f n
(3.1)

Pre =
t p

t p+ f p
(3.2)

Rec =
t p

t p+ f n
(3.3)

FPR =
f p

f p+ tn
(3.4)

F− score = 2
(

Pre×Rec
Pre+Rec

)
(3.5)

Conclusion
In this chapter we discussed our experimental methodology. We began with our approach to
the collection of both abusive and non-abusive hosts. The next step of our methodology is the
generation of transport flow data from accessing the collected host set using our custom URL
content fetcher and redirection follower. From the transport flow data we extract 17 features that
we use as the input vector into our supervised learning classifier. The classifier is then tested
using a 10-fold cross validation technique that is common in statistical analysis. In addition, we
discussed the validation of our fetching software and how we determined the performance of
the classifier.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

CHAPTER 4:
Results

This chapter examines our experimental results. We begin with a discussion of our approach
compared to those used with Netflow records, and in particular those relying on redirection
behavior evident in Netflow. Next, we examine the types and frequency of redirection found in
our datasets. Then we show how our classification is applied to HTTP traffic gathered from both
known good and abusive hosts from four topologically separated vantage points. In addition to
classifier performance, we discuss which features were most discriminative, and the sensitivity
of our model to legitimate sources of congestion.

4.1 Netflow Limitations
As discusses in Chapter 2, significant prior work has explored various aspects of network-level
information to infer various malicious activity. We stress here our approach is distinct from
current practice: rather than examining the distribution of abusive IP addresses [32], network
BGP prefixes [29], IRC channel [10] or peer-to-peer botnet signatures [15], DNS behavior [33],
or web page image shingling [9], our approach is content, name, and IP address agnostic. By
not having to rely on private content, our system can bypass issues which generally hinder other
approaches including legal constraints or data encryption.

Most closely related to our effort is work using Netflow [6] information to infer suspicious be-
havior. Netflow records are created per unique flow tuple consisting of: source and destination
IP address, protocol, and source and destination transport port. Each directional flow record
contains coarse-grained information including the total number of bytes, packets, and the flow
duration. Netflow records contains only a small subset of the features we collect and analyze in
this research (listed in Table 3.6). Netflow version 5 is one of the most common versions used
today; its features are shown in Table 4.1.

One example of using Netflow records for abusive botnet host detection comes from “redirection
bot seeker,” [5] or RBseeker. In RBseeker, Netflow records are used to identify infrastructure
bots using redirection, as described in Section 3.2, to obfuscate and hide the true source of abu-
sive content. Because many schemes employ Netflow, it is our intent to show our fine-grained
packet feature approach is superior to Netflow analysis in redirection. We will demonstrate this
superiority by comparing our technique to RBseeker.

29

Table 4.1: Pertinent Fields in Netflow v5 Record

Feature Description
Source IP IP address of the device that sent the flow
Destination IP IP address of the destination device
Next Hop IP IP address of next device
Inbound snmpIFindex SNMP index that identifies the Inbound Interface
Outbound snmpIFindex SNMP index that identifies the Outbound Interface
Packet Count Number of Packets in Flow
Byte Count Total Number of Bytes in Flow
Time as Start Value of SysUpTime when first packet received
Time at End Value of SysUpTime when last packet received
Source Port Port number of the device the flow went out of
Dst Port Port number of the device the flow went out to
TCP flags Protocol State
Layer 4 Protocol Type of layer 4 protocol
TOS / Diffserv Value that designates special handling
Source AS AS that flow came from
Destination AS AS that flow is going to

4.1.1 Per-device Redirection is Common

An investigation of the top 20,000 Alexa sites suggests redirection is more common for legit-
imate web traffic than initially thought. One root cause of legitimate redirection is websites
using redirection as a mechanism to tailor content to the end-user’s browser and device. For
example, a user on a mobile device accessing the website of a newspaper will commonly be
redirected to a mobile version of the content suitable to the device’s screen, network speed, or
user preference. User preference can be dictated by their service plan (e.g., different speeds or
content views based on how much their service subscription costs). Over the past few years,
content for legitimate websites have been become more dynamic and one of the tools content
distributors employ is redirection to satisfy not only customer desires, and company profits, but
also infrastructure capability (e.g., mobile devices versus desktop computers).

To understand redirection due to end-user device type, we created a HTTP poller which present
12 different user-agent strings to each of the top Alexa listed web servers. As part of the ex-
changed HTTP headers, the user-agent header field advertises the software and hardware of the
requesting browser [34]. We test user-agent strings representing all major browsers, operating
systems, and a variety of mobile devices.

30

20 21 22 23 24

Unique HTTP Results from Different User-Agents

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D

F
o
f

A
le

x
a
 1

0
k

Alexa (by URL)
Alexa (by Bytes)

Figure 4.1: Redirection by per-device customization.

For each web site, we count the total number of unique results returned in terms of redirection
URLs and bytes returned, i.e., we measure the size of the returned set. Note, we are not mea-
suring if there is any redirection, but rather if the final landing page is different for different
devices. Thus, if the server’s behavior is consistent (e.g., always redirecting) irrespective of the
user-agent, the set size is one. In contrast, a site that for example redirects users when they
report to be using a mobile device increases the set size.

Figure 4.1 demonstrates that approximately 20% of Alexa listed sites employ at least one user-
agent specific redirection. Similarly, more than 40% of the sites return different byte counts
depending on the advertised browser. Device or web browser type does play a significant role
in observed redirection, and will impact schemes which rely on identifying such redirection
among traffic flows.

4.1.2 General Redirection is Common
User-agent redirection tells us using redirection as a sole indicator of abusive content is not
completely accurate. In addition, we wish to understand the types and prevalence of various
redirections encountered when visiting both legitimate and known abusive web sites in Ta-
ble 3.3. Note, in this part of the analysis, our fetcher presents only a single HTTP user-agent
string to each web server as discussed in Section 3.2. In other words, we next seek to ascertain
redirection not due to user agent.

Figure 4.2 shows the fraction of sites which perform any type of redirection for our various
datasets, as a function of vantage point. The results show that non-abusive hosts redirected ap-

31

Alexa 20k Alexa (Rand 20k) Malware/Phish Honeypot
0

10

20

30

40

50

P
e
rc

e
n
t

o
f

T
o
ta

l
In

it
ia

l
U

R
Ls

VP1
VP2
VP3
VP4

Figure 4.2: Frequency of redirection among web site populations, as observed from four vantage
points.

3XX HTTP META JavaScript
0

20

40

60

80

100

P
e
rc

e
n
t

o
f

T
o
ta

l

Alexa 20k
Alexa (Rand 20k)
Malware/Phish
Honeypot

Figure 4.3: Redirection technique employed when a web site redirects.

proximately 32% (Alexa Top 20K) and 27% (Alexa Random 20K) of the time, while our abusive
hosts redirected approximately 20% (Malware/Phishing) and 15% (Honeypot) respectively.

Based on vantage point we see the non-abusive hosts showed almost no difference in redi-
rection behavior while the abusive sites do show slight variability. The variability for the
Malware/Phishing and Honeypot sites are attributable to site availability or site change due
to fast-flux DNS changes. In a small number of instances we found URLs would resolve at
one vantage-point but not from another. Also in certain cases, a URL which resolved in one
vantage-point had a different IP address at another vantage-point.

32

Table 4.2: HTTP 3xx Redirection Status Codes

Feature Description
300 Multiple Choices - user select preferred representation
301 Moved Permanently
302 Found
303 Response Can be found under different URI
304 Not Modified
305 Use Proxy
306 Unused
307 Temporary Redirect

Taking these examples into account, we believe site availability and fast-flux DNS are relevant
to abusive infrastructure detection.

Before experimenting, we posited that redirection chain statistics play a role in discrimination.
Surprising, however, we observe the Alexa top 20K sites perform the most redirection, while
the malware and honeypot sites redirected approximately 12% less. If redirection was once a
sufficient means to detect abusive infrastructure, abusive sites have compensated and now use
different obfuscation techniques, e.g., proxying and DNS redirection.

Note the Alexa database includes domains rather than specific web sites. For this analysis, we
prepend “www” to each domain before probing. Without such prepending, we observe signifi-
cantly higher redirection rates, approximately 70% for Alexa listed sites. Thus, a third source
of redirection is the common practice of users to enter the abbreviated, domain-only form of a
URL, only to be redirected to a “www” URL.

Another aspect of redirection we investigated is the distribution of types of redirection tech-
niques irrespective of legitimate or abusive site. The four techniques we focused on are dis-
cussed in Section 3.2. Overwhelmingly, we found the technique for redirection was via HTTP
3xx status codes. The 3xx status codes are listed in Table 4.2. As shown in Figure 4.3, approxi-
mately 87% of the redirecting Alexa sites uses status codes, as compared to 73% of malware and
88% of honeypot sites. Thus, the top 20,000 Alexa sites have similar redirection characteristic
as a random selection of 20,000 Alexa sites.

A negligible fraction of sites use HTTP header redirection; the malware and phishing sites are
the most prominent source of such redirects, accounting for approximately 0.2%. The primary
differentiator with respect to redirection are those sites employing meta refresh and JavaScript

33

Table 4.3: Average Redirection Chain Lengths

Host Population VP1 VP2 VP3 VP14
Alexa Top 20K 1.45 1.44 1.44 1.44
Alexa Random 20K 1.33 1.33 1.33 1.32
Malware / Phishing 1.29 1.30 1.31 1.30
Spam 1.16 1.16 1.15 1.14

redirection. Meta refresh is a tag which is part of the HTML web page content rather than
the HTTP protocol, while JavaScript is a scripting language supported by many browsers. The
malware and phishing sites are more than twice as likely to use meta refresh and JavaScript as
compared to legitimate Alexa sites.

In addition, we looked at the average redirection chain length of each host population by vantage
point. What we found there was not a large difference between each of the populations. Also,
we found that legitimate URLs actually were redirected on average more often than abusive
ones. Due to the small difference between average chain lengths, we believe the discriminatory
power of chain lengths as a feature in our classification adds no value. Table 4.3 shows the
average redirection per host population.

4.1.3 Netflow is too coarse-grained
The three primary features in RBSeeker [5] and other redirection detection schemes are: i) flow
duration; ii) inter-flow duration; and iii) flow size. The intuition is that redirection creates small
and fast flows (e.g., a small redirection page or status code in the HTTP header) and are closely
spaced in time (as the redirection is automated, rather than human driven).

These three features are readily available from Netflow records and RBseeker uses them in
addition to other features, e.g., the DNS, to detect redirecting bots. To better understand the
efficacy of Netflow features in this role, we examine the distribution of these features among
abusive and legitimate sites based on our collected data.

From the packet captures resulting from following URLs and fetching content from the sources
detailed in Table 3.3, we generate Netflow records. We then examine the time duration and total
bytes of the first flow for any given URL fetched. When a site has one or more redirections, we
measure the inter-flow duration, or time between successive flows corresponding to an origin
URL.

34

0 2 4 6 8 10
Flow Duration (s)

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(a) Duration

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Interflow Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(b) Interflow Duration

0 20000 40000 60000 80000 100000
Flow Size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Alexa
Abusive
Scam Hosts

(c) Bytes

Figure 4.4: Distribution of features available from Netflow evident in our datasets. Flow dura-
tion, interflow duration, and flow size are largely similar, suggesting that Netflow features are
too coarse-grained and not sufficiently discriminative.

Figure 4.4 depicts the cumulative fraction of each of these Netflow features as observed in
our three datasets: the Alexa listed hosts, external abusive hosts, and our honeypot-gathered
scam hosts. We see the total time duration (4.4(a)) and interflow durations (4.4(b)) are largely
indistinguishable between legitimate and abusive sites. While the total number of bytes of Alexa
listed hosts is generally larger and has a longer tail (4.4(c)), the results are again quite similar.

Redirection is only one potential means used to hide and protect abusive infrastructure a sec-
ond is proxies. In addition to the relative lack of differentiation afforded by redirection, such
techniques cannot detect proxies.

35

Thus, our fundamental contention is fine-grained transport traffic data offers specific benefits
over the current practice of using Netflow records to detect abusive behavior, without compro-
mising privacy or processing performance. We validate this assertion next.

4.2 Discriminative Features
Next step we performed basic data exploration to understand which features are likely to be dis-
criminative, as well as to substantiate or disprove our intuitions regarding abusive host traffic.
To understand the utility of each different traffic feature in relation to the point along any redi-
rection chain, we therefore divide our redirection chain analysis into: “initial,” “intermediate,”
and “terminal,” states corresponding to the first URL, the set of any intermediate URLs due to
redirection, and the final landing page.

Timing, including initial RTT as inferred from the TCP three way handshake, as well as the
RTT variance, inter-arrival time variance (jitter), and maximum idle time over the sequence of
packets is one powerful aspect of our approach not available in coarse-grained Netflow. We first
examine the distribution of initial RTTs among the different website populations in Figure 4.5.

Somewhat surprisingly, we see little initial RTT difference between legitimate and abusive web-
sites. To better understand this initial RTT phenomenon relative to our United States van-
tage points, we perform a basic continent geolocation of hosts in each population using Max-
Mind [35]. Table 4.4 shows two interesting facts: first, continental host distribution varies little
among abusive and legitimate sites, suggesting location or RTT-based techniques cannot suffice
to identify all abusive hosts. Second, North America dominates across all populations, with
between 50-52% of the hosts. We chose to geolocate these websites because of how location,
specifically the distance between a webserver and a requesting host, plays a role in a three-way
handshake (3WHS) relative to our vantage points. 3WHS total time is one of our classification
features we wanted to see if this feature’s discriminatory power changes based on location of
the abusive infrastructure.

In Figure 4.5 we look at the cumulative distribution of flows by their initial RTT of the 3WHS.
We subdivided the distributions between initial, intermediate, and terminal. Initial refers to
only the first URL in a redirection chain and is the one mined in the host collection process.
If there is only one URL in the whole redirection chain then it would fall into this category.
Intermediate refers to all of the flows between the initial and the final URL in the redirection
chain and terminal is the final URL (not including the initial).

36

(a) Initial (b) Intermediate

(c) Terminal

Figure 4.5: Distribution of initial RTT from TCP three way handshake among different website
populations.

In Figure 4.5(a) we see little to no difference in the cumulative distribution between abusive and
non-abusive flows. So at first glance we see no benefit from using initial RTT of the 3WHS for
our host population in the determination of abusiveness. But if we analyze the whole redirection
chain, not just the initial URL, we see large differences between the populations during the in-
termediate flows of the redirection as seen in Figure 4.5(b). This variation is most likely caused

37

Table 4.4: Continental distribution of host populations

Alexa Abusive
Top Random Honeypot External

NA 50.9 50.6 51.0 51.6
EU 29.5 34.2 35.4 31.1
AS 17.0 12.5 12.1 7.3
SA 1.6 1.6 0.3 7.3

by different hosts which supports different functionality. In the terminal plot (Figure 4.5(c)),
we don’t see as much variability between Malware/Phishing and Alexa but we do see a large
difference between the Honeypot (spam) and the other populations. The differences found in
the intermediate and terminal phases of the redirection chains allows the three-way handshake
feature to be useful for classification.

We next turn to the variance of RTT samples, as inferred by our technique. Figure 4.6 shows
RTT variance is a strong indicator for abusive hosts of scam infrastructure as discovered by our
honeypot. Like the plots in the three-way handshake, we sub-divided the plots for RTT variance
into initial, intermediate, and terminal. While the difference and variability between the plots
is not as significant is size as seen in the three-way handshake plots we still find discriminatory
power in leveraging the RTT variance feature.

Looking at the initial plot in Figure 4.6(a) we see the Alexa and Malware/Phishing overlap
consistently through their respective plots. But the Honeypot population shows a more distribu-
tive RTT variance. So in this instance the discriminatory power for the initial RTT variance is
between the Honeypot and the rest of the population. In the intermediate phase, as shown in
Figure 4.6(b), the Malware/Phishing and Honeypot populations seem more consistent with each
other. While the Alexa population changes little from the initial plot. This is probably due to
consistency in the resources available to non-abusive hosts. The interesting point of this plot is
that almost 90% of the malicious flows have variance less than or equal to .01 seconds while
the Alexa flows show only 80% at the same variance. Are initial assumption that abusive hosts
use under-provisioned resources as compared to their counterparts seems to be contradicted
here. This could be due to rate limiting or load balancing. We leave this investigation for future
work. But none-the-less we can leverage this difference between the flows in our classification
methodology. Finally in Figure 4.6(c) we see little variability in the three plots until we look
at the final 40% of flows depicted. At this point the three plots start separating to their peak
distribution at 80%. Again, this difference shows us there exists discriminatory value for this

38

(a) Initial (b) Intermediate

(c) Terminal

Figure 4.6: Distribution of RTT variance among different website populations.

portion of the redirection chain. At each plot we find evidence of how RTT variance adds value
as a feature to our methodology.

As a final example, we discover the receiver window is a strong differentiator of abusive versus
legitimate hosts. Recall the TCP receiver window provides flow-control (which is different than
congestion-control): a host which is unable to read from its local socket buffer quickly enough
can slow the remote source to prevent buffer overrun.

39

(a) Initial (b) Intermediate

(c) Terminal

Figure 4.7: Distribution of RTT variance among different website populations.

We collect the initial receiver window value, its average, maximum, and the number of times it
goes to zero. All values are scaled appropriately given TCP window-scale options. Figure 4.7
shows the distribution of average receiver window sizes among the different populations for
different stages of the redirection chains.

Perhaps counter-intuitively, the receiver window sizes are smaller for the legitimate Alexa web

40

sites. After a detailed exploration, we believe this phenomenon reveals it is due mainly in part to
the advanced receiver window auto-tuning features present in modern server operating systems.
Because legitimate servers are often quite busy, and are sending much more traffic than they are
receiving, the operating system elects to allocate minimal buffer space to the socket to conserve
resources. Further, the values which regulate receiver buffer sizes are a function of available
network subsystem memory. Specifically, Linux exposes these parameters via tunable sysctls:
tcp_moderate_rcvbuf (since Linux 2.4.17 and 2.6.7) and tcp_rmem (since Linux 2.4) [36].
Other operating systems perform similar optimizations.

Thus, the receiver window is a powerful method by which to identify busy, well-provisioned
servers. The other receiver window features, including minimum and maximum also serve
to identify properties of the end-system and the load it is under. For example, old operating
systems – common among compromised residential hosts – do not perform any window scaling,
and therefore are immediately identifiable by this feature alone.

4.3 Classification Performance Results
Given the encouraging results from the aforementioned discriminative features, we run two
binary classification (Naïve Bayes and C4.5 Decision Trees), supervised learning algorithms
across different combinations of legitimate and abusive hosts in our population (Table 3.3), for
traffic as observed at our four vantage points (Table 3.1).

In assessing classification performance, all of the metrics in Section 3.5 are needed. For in-
stance, accuracy is misleading if the underlying class prior is heavily skewed, for example if
there are many more legitimate than abusive hosts being classified. Precision therefore mea-
sures, for hosts predicted as abusive, the fraction which are truly abusive, as determined by the
population from which they originated. Recall measures the influence of misclassified hosts,
therefore is a metric of the classifier’s ability to detect abusive hosts. Specificity, or true neg-
ative rate, determines how well the classifier is differentiating between false positives and true
negatives.

Our testing reveals the decision tree learner performs far better than the Naïve Bayes classifi-
cation algorithm. Table 4.5 and Table 4.6 shows our performance results for different combi-
nations of legitimate and abusive sites for vantage point four (VP4). All of the vantage points
have similar results per classification algorithm. All results can be found in Appendix A.

We focus on the decision tree results. Our first observation is that transport features can identify

41

Table 4.5: Transport traffic classification performance - C4.5 Decision Tree

Acc Pre Rec FPR
Alexa vs. External 0.87 0.77 0.68 0.09
Alexa vs. Honeypot 0.94 0.84 0.81 0.03
Alexa Rnd vs. External 0.80 0.73 0.62 0.11
Alexa Rnd vs. Honeypot 0.94 0.85 0.80 0.03

Table 4.6: Transport traffic classification performance - Näive Bayes

Acc Pre Rec FPR
Alexa vs. External 0.74 0.57 0.70 0.24
Alexa vs. Honeypot 0.82 0.50 0.66 0.15
Alexa Rnd vs. External 0.73 0.57 0.65 0.23
Alexa Rnd vs. Honeypot 0.80 0.49 0.66 0.16

abusive hosts gathered from the honeypot better than the external malware and phishing sites.
Whereas we achieve a 94% accuracy classifying abusive traffic from the honeypot sites, we only
get 87% accuracy.

Looking at the false positive rates (FPR), we see that while the Honeypot population show
a 3% rate, the external sites show 9% and 11% respectively. These rates are not insignificant
especially when dealing with high volumes of traffic from large network connections like gigabit
links. We leave the problem to decreasing the FPR to future work, but believe that approaches
where we could merge our methodology to other existing approaches, like the ones discussed
in Chapter 2, would produce a decreased FPR less than an either approach by itself.

Second, the Alexa top 20,000 represents well-provisioned hosts and sites supporting large vol-
umes of traffic and commercial customers. As such, compared to a random sampling of 20,000
Alexa hosts, the top 20,000 provide a better basis for classifying legitimate hosts. As you ap-
proach the middle-tier to lower-tier of the Alexa Top 1 Million sites you start viewing sites not
only limited in resources but also located in countries where the internet infrastructure may be
out-dated and under-provisioned. For example looking at the top two sites as reported from
the analytics collected from the last 3 months ending in Aug 2012, show google.com and
facebook.com each represent 5.4% and 6.3% of estimated percentage of global pageviews.
While the 500th position site is 0.00255% [26]. This tells us that visitors to sites in the bot-
tom tiers of the Alexa listed hosts most likely have very little traffic. These sites are likely
not creating a revenue stream and as such probably not associated with expensive high-end
infrastructure.

42

Table 4.7: Transport traffic F-scores (harmonic mean of precision and recall) using decision
trees across vantage points and combinations of legitimate and abusive sites

VP1 VP2 VP3 VP4
Alexa vs. External 0.72 0.71 0.73 0.72
Alexa vs. Honeypot 0.83 0.81 0.82 0.83
Alexa Rnd vs. External 0.65 0.67 0.67 0.67
Alexa Rnd vs. Honeypot 0.81 0.81 0.81 0.83

Table 4.8: Transport traffic F-scores (harmonic mean of precision and recall) using Näive Bayes
across vantage points and combinations of legitimate and abusive sites

VP1 VP2 VP3 VP4
Alexa vs. External 0.64 0.63 0.63 0.63
Alexa vs. Honeypot 0.57 0.57 0.58 0.56
Alexa Rnd vs. External 0.63 0.61 0.61 0.61
Alexa Rnd vs. Honeypot 0.56 0.56 0.54 0.55

Next, we examine the classification F-scores for each of our four vantage points. Table 4.7 and
Table 4.8 shows the F-scores for both decision trees and Näive Bayes classification algorithms.
Again we see that the decision tree performs better, and we will refer to those results when
discussing F-scores.

Because there is a natural tension between achieving high precision and high recall, the com-
monly used F-score metric takes the harmonic mean of precision and recall. Table 4.7 shows
the F-scores are consistently better for the honeypot sites, across all vantage points. Further,
performance for all datasets remains consistent across vantage points, implying the technique
works well for a variety of different connection types and physical locations.

The reasons why the classifier performs better on the Honeypot sites than External ones should
be investigated more in future work. The difference could be due to the type of compromised
systems that exploit using spam versus other malicious behavior.

Thus, against traffic from the abusive hosts supporting websites as discovered in our honeypot,
we reliably achieve greater than 90% accuracy with less than a 4% false positive rate. These
results suggest transport traffic analysis can greatly aid existing schemes by providing a method
which is largely orthogonal, hence boosting performance. Further, as previously discussed,
transport traffic features are difficult for adversaries to subvert. We leave analysis of the combi-
nation of transport classification and existing schemes to future work.

43

Torrent
Peer

monitor
torrent

HTTP Fetcher

VP1

VP3

Dedicated T1

b) probe abusive

a) probe VP1

Residential Cable

Traffic
AnalysisTorrent

Peer

Apache

Apache

Apache

Torrent
Peer

fetcher /
controller

Gigabit

Gigabit

VP2

BitTorrent

httpd

BitTorrent

BitTorrent

Known Abusive Host

Figure 4.8: Test and Setup

4.4 Congestion Sensitivity
A natural concern with our approach is the traffic features we extract are often indicative of con-
gestion, suggesting legitimate hosts experiencing congestion might be misclassified as abusive.
To better understand the sensitivity of our technique, we analyze the traffic of legitimate hosts
which are congested with controlled, real-world BitTorrent traffic. BitTorrent is attractive as it
allows continuous testing to explore time-of-day effects, is bursty, and exchanges traffic with
many peers simultaneously.

In simple terms, we setup three peer-to-peer servers hosting large gigabyte sized files. Then
we served these files, mostly linux distributions, to the general public for download. Our goal
was to congest the network uplink for each of these peer-to-peer servers. One of the advantages
of using BitTorrent is it’s ability to rate limit the the files being served to the peer-to-peer net-
work. While congesting the uplinks, we simultaneously fetched both abusive and non-abusive
URLs from the same infrastructure hosting the peer-to-peer servers. During the fetching pro-
cess we captured the transport traffic streams. Next we can analyze the data and see how much
congestion can disrupt our classification.

Specifically, we set up the experiment detailed in Figure 4.8. Our three vantage points are each
configured with an instance of the Apache HTTP daemon and a BitTorrent client. Note, in
contrast to our previous use of vantage points (VP1-3) to collect traffic, we now use these same
hosts as candidate “legitimate” web hosts.

44

The BitTorrent client seeds many public, legal torrents. Recall each of the vantage points reside
on networks with varying access connectivity, so we may test different real-world congestion
scenarios.

A centralized controller performs two functions. First, it continuously monitors the aggregate
upload rate of each of the vantage points, as this rate varies depending upon Torrent load.
Second, it fetches HTTP content from both the vantage point servers as well as a list of known
abusive hosts. We analyze the traffic features of the two classes: legitimate but congested flows,
versus abusive flows.

Our classifier was trained just as in the main experiment. We took the flows from each of the
three peer-to-peer vantage points and classified them as either abusive or not-abusive. Taking
the same vector of features on a per-flow basis we trained the classifier. We also attempted the
Support Vector Machine [13] model learning algorithm to see if we would get better results for
our classifier, but the results show that the best algorithm was the C4.5 decision tree. Then we
used the same 10-fold cross-validation test to determine accuracy and other prediction metrics
(FPR, TN, TP, FN, FP).

Figure 4.9 depicts the transport traffic analysis performance, measured by F-score, as a func-
tion of background congestion and link connectivity. Note the physical link characteristics of
VP1 and VP3, a dedicated T1 and residential cable respectively, place an upper-bound on our
background Torrent upload rate. We were unable to saturate VP2, which has a Gigabit link.

Our classification performance remains high in the face of background traffic. In addition per-
formance appears to be insensitive to the intensity of background traffic. Across all background
traffic levels, we continue to see receiver window features as most discriminatory, as we dis-
cussed in Section 4.2 receiver window features are insensitive to background cross-traffic. How-
ever, we find other discriminative features involved in the classification change as a function of
the background traffic – emphasizing the power of the statistical learner: as one feature yields
less power, others provide more information. For instance, as background traffic increases, the
maximum idle time, jitter, and RTT variance become more important in the classification deci-
sion. As an example, we show in Figure 4.9 the features that provided the highest discriminatory
power at particular stage of the congestion experiment for VP3. Our statistical learner uses the
Relief Algorithm [37] when determining the weight of each feature during classification. The
data for the other vantage points are found in Appendix B.

45

Table 4.9: VP3 - Top 5 Features Used for Classification at Specified Upload Rates

100KB/s 250KB/s 500KB/s
#1 Min Receiver Window Min Receiver Window Min Receiver Window
#2 3WHS Total Duration Total IDLE Time
#3 # SRC PKTS # SRC PKTS Total Duration
#4 Total Duration Total IDLE Time Jitter
#5 # DST PKTS 3WHS # SRC PKTS

Finally, we examine the effect of the fetched object size and time-of-day. While we might expect
worse classification performance when larger objects are fetched in the presence of background
traffic, as doing so might exacerbate the congestion, we find the classification performance
does not depend on the object size. Similarly, overall network traffic is well-known to vary
as a function of time-of-day [38]. Again, we see the set of discriminative features change as
a function of time-of-day. For example, the total number of retransmissions is much more
powerful during the evening, off-peak hours as compared to peak hours. However, we do not
observe the classification performance varying as a function of the hour of the day the flows are
collected, as shown in Figure 4.10.

4.4.1 Limitations
Even though we were able to show that background congestion can be overcome there are still
limitations to be explored. First of all we looked only at host populations from the spam Honey-
pot and only fetched them from a controlled environment. For the experiment to be more robust
the need to incorporate a more wide range of known abusive URLs exists. In addition, BitTor-
rent, while useful in congesting a machine’s local uplink is probably not fully representative of
most congestion. Adding combinations of other types of network traffic along with peer-to-peer
traffic would add more of a real-world effect to the experiment. Having a mixture of large com-
munication streams from peer-to-peer sessions along with smaller sessions like HTTP requests
would inject more burstiness and randomness. Finally, adding more congested serving nodes
beyond three would also allow for more robust data collection.

4.5 Overhead
Finally, we examine the performance impact of our transport traffic collection agent, as com-
pared to industry-standard Netflow. That is does our collection agent inject an unreasonable
amount of overhead in processing time or resource usage as compared to Netflow? The perfor-
mance impact is the delta between how long it takes our agent to process the same information

46

as compared to Netflow. To mimic the overhead of Netflow, we employ two open-source tools:
flowtools as a Netflow collection agent, and softflowd [39] to read a pcap capture file, create
flows, and export them to the flowtool collector [40]. We use the same real-world pcap capture
file for testing both Netflow and our collection agent. The file contains approximately 2M pack-
ets, gathered over 10 hours, with an average flow of 55 bytes taking 3.3 seconds. For each
tool, we use the UNIX time utility to measure total time elapsed and estimate computational
overhead.

Our transport traffic analysis capture requires 1.83s, while softflowd takes 1.13s. The flowtools
capture program uses negligible resources, taking only 0.06s of system time. Thus, we approx-
imate total time for Netflow as the sum: 1.19s. Extrapolating these numbers, our un-optimized
collection agent can process more than 1M packets per second. With further optimization, and
dedicated hardware support, we believe much higher packet rates are possible.

Thus, although per-packet captures are considered infeasible due to the large storage overhead,
the extra computational cost of maintaining the additional fine-grained features we leverage in
this work is minimal.

Our tests were done in software only. The next step would be to incorporate our collection agent
in hardware like a router. We leave this for future work, but believe that our approach would
work in hardware with minimal added overhead.

4.6 Conclusion
In this chapter we discussed the results of our approach to the detection of abusive infrastructure.
Our results show we were able to successfully classify malware/phishing flows with an accuracy
rate as high as 87% and classify spam flows with an accuracy rate as high as 94%. We have
shown three examples (RTT Variance, 3WHS timing, and receiver window size) of how are
feature selection can provide discriminatory power. In addition, we compared and contrasted
our collection agent to Netflow and discussed why a finer-grained collection method is helpful
in determining abusiveness. Finally, we showed results of our congestion experiments and
overhead comparisons. A full break down of classification analysis results can be found in
Appendix A. Results for the congestion experiment can be found in Appendix B.

47

50 70 90 110 130 150 170 190 210
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Bayes
Tree

(a) VP1 (T1)

50 100 150 200 250 300 350 400 450 500
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Bayes
Tree

(b) VP2 (Gigabit)

50 100 150 200 250 300 350 400 450
Background Upload Speed (KB)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Bayes
Tree

(c) VP3 (Cable)

Figure 4.9: Transport traffic analysis performance as a function of background congestion and
link connectivity.

48

0 3 6 9 12 15 18 21 24
Time of Day (Local)

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

Bayes
Tree

Figure 4.10: Transport traffic analysis performance as a function of time-of-day

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

CHAPTER 5:
Conclusion and Future Work

5.1 Conclusion
In this thesis we hypothesized it is possible to characterize abusive infrastructure given trans-
port features gathered on a per-flow basis from TCP headers and packet timing. To investigate
this hypothesis, we explored a passive traffic analysis approach for detecting abusive infrastruc-
ture relying on content inspection, sender reputation, or command and control signatures. We
present a novel solution based on fine-grained transport traffic features.

Our results demonstrate that per-packet TCP header and timing information within a network
flow, in conjunction with supervised learning techniques, can discriminate known abusive traffic
from known good traffic, and hence suggests at variety of means for detecting abusive infras-
tructure. Further, our IP address and content agnostic approach can be more widely deployed
than previous techniques, for instance in networks or countries with strict privacy constraints.

The full list of features are provided in Section 3.4. Our results show that to achieve an accuracy
rate as high as 94% for URLs collected by our honeypot and 87% for malware/phishing URLs
collected from two well-known blocklists. Future work should include incorporating more data
from a wider range of sources including live traffic.

In addition, we looked at redirection as a possible indicator for abusive behavior e.g., number of
redirections per requested URL. Somewhat surprisingly, we found that per-device redirection
and general redirection is common for legitimate websites. Looking at a per-device perspec-
tive we found approximately 20% of Alexa listed sites employ at least one user-agent specific
redirection. We also surprisingly found that legitimate websites redirected approximately 12%
more than the spam, malware, or phishing sites. What we found was that the variability in the
average redirection chain size was too small to use as a feature. The average legitimate chain
length was 1.45 while spam and malware/phishing sites were of average direction length 1.29
and 1.16 respectively. These experiments are detailed in Section 4.1.1.

An initial concern we had with our approach is that the features we extract are often indicative
of congestion. To explore the concern that legitimate hosts experiencing congestion may be
classified as abusive we conducted an experiment to analyze congested traffic. Using real-

51

world BitTorrent traffic to congest the network uplink of three webservers under our control, we
conducted fetches of URL content from legitimate and abusive sites. Collecting our features and
training our supervised learning classifier as we did for our main experiment, we still averaged
greater than 90% accuracy differentiating abusive from good sites.

Finally, we examined the overhead of our feature collection agent compared to the features
available from the widely-deployed and standardized Netflow. Speed and resource usage is
a key component when running any system on a real-time network. To see how our system
performed, we compared it to flowtools [40], a Netflow collection agent, and softflowd [39],
a program that exports flows to the collection agent. We found in our experiment on 2M packets
that our system took 1.83 seconds as compared to 1.19 seconds for the Netflow system to extract
flow features.

5.2 Potential Mitigation Strategies for the Adversary
The transport traffic features we explore are low-level: some are inherent to the environment,
such as cross-traffic, packet reordering, and timing, while others are specific to the end-system,
including receiver window behavior, and congestion. While not impossible for adversaries
to modify their flow behavior in a manner to evade detection, our technique presents several
impediments to doing so.

First, an abusive host might attempt to measure its available uplink bandwidth in order to rate
limit its traffic. However, the dynamic properties of the network, and high-levels of statistical
multiplexing on commodity connections, imply such efforts will likely be unreliable.

Second, other aspects, such as receiver window behavior require operating system and kernel
modifications and as such are hard to effect. If an adversary does control the host they maybe
able to set some of the receiver window settings, but only up to the point the operating system
supports. In particular, closed-source systems provide few methods to modify the core TCP/IP
stack. If the operating system does optimize receiver windows as a function of available mem-
ory, then there is little an owner can do to get around the behavior itself, thereby making the
feature valuable for our discrimination.

Third, “low-and-slow” type of stealth strategies [5] may be effective in evading our transport
traffic technique, but impart a significant abusive infrastructure cost as more systems are needed
to achieve equivalent aggregate rates.

52

The bottom line is that for spam propagation, phishing attacks, and malware distribution to be
successful, bandwidth, speed, and host resources are needed. To mask their traffic successfully,
malicious hosts must mimic average network traffic. By doing so, though, they significantly
decrease their ability to economically launch successful campaigns.

5.3 Future Work
The following section outlines future work crucial to abusive infrastructure detection as it relates
to the research performed in this thesis.

Bot Detection

A natural question is if our proposed method can detect not just abusive infrastructure, but bots
and botnets specifically. Across our malicious host populations, we perform reverse DNS (PTR
record) lookups. For each, we use a set of heuristics to determine whether the DNS name
corresponds to a residential connection or not. We use an existing tool containing a list of
keyword heuristics, e.g., “cable”, “dsl”.

Surprisingly, only 2% of the unique IPs are residential based on the DNS name heuristics.
Approximately 37% have no DNS PTR record at all. The remaining 61% are non-residential.
We then use our classifiers to attempt to differentiate between residential and non-residential
abusive hosts. While we achieve very high accuracy, approximately 97% using decision trees
and Naïve Bayes, this level of accuracy is due only to the large class imbalance. The F-score is
poor, at only .09. We leave the investigation of finding bots among the abusive hosts for future
work.

Support Vector Machine

We tested both Naïve Bayes and C4.5 decision tree learning algorithms when creating our clas-
sifier. We found that the decision tree provided the highest level of accuracy with a lower
false positive rate than Naïve Bayes. We propose that future work using our classification
model incorporate other learning algorithms, specifically including Support Vector Machines
(SVM) [13]. Instead of using strictly linear classification, SVM can classify two-class samples
by constructing hyperplanes in a multidimensional space. These spaces separate binary classes.
By using other algorithms, and trying out other variables (e.g., different kernel functions for
SVM) via grid search we may be able to decrease the false positive rate and increase accuracy
even further.

53

Resource Contention

While this paper does not focus on network congestion or other forms of resource contention,
we recognize that host processing load may have a significant impact on several transport traf-
fic characteristics such as the initial RTT and RTT variance. Intuitively, most Alexa web sites
should experience higher levels of server load than malicious ones because of their much larger
customer bases. This may explain why the abusive hosts exhibit better initial RTTs at the begin-
ning and middle stages of the redirection chain, as illustrated in Figure 4.5. Further experiments
are needed to better understand this phenomenon.

Real-World Congestion

To increase the scope of our experimentation we would also like to include real background
traffic such as from our own campus being an immediate initial target. Using traffic generated
by real users would inject actual internet user clutter into the data captures. We will be able to
investigate to what degree our classification approach is influenced by natural network behavior.

Blocklist Comparison

To see if our approach can find abusive hosts that have not been collected by major blocklists
such as those used in this thesis (phishtank [25] or malwaredomains [23]). Finding such
hosts, that can be verified as abusive, will show that our approach provides a natural compliment
to techniques used by major blocklisting enterprises. Testing both techniques in conjunction
with each other may result in a more robust system then either of the techniques individually.

Decrease False Positive Rates

While our results are quite encouraging, we would also like to achieve a lower false positive
rate. Currently we have a false positive rate at 3% against the Honeypot and 9%–11% for the
malware/phishing data set. As fraction this is a low false-positive rate, but can unfortunately
result in a large absolute number of false-positives.

A way to achieve a lower false-positive rate would be to incorporate a robust whitelist of legit-
imate domains. Currently we use a whitelist of approximately 50 domains to compare URLs
returned from the Honeypot and redirection chains. Our approach labels all flows coming from
the Honeypot as abusive, and if the first URL in a redirection chain is labeled abusive then all
of the flows in that chain are labeled abusive, if not in the whitelist.

54

A larger list should increase classifier accuracy.

Combining Methods

Additionally, we plan to study the power of combining methods, for instance using transport
features as part of a multi-stage hypothesis test. We note many of the flows we examine are
short-lived, consisting of few packets and few total RTTs. We wish to explore strategic use of the
TCP maximum segment size variable, along with other low-level TCP mechanisms, to gather
more packets across longer time scales in order to improve our classification performance. We
also hope to apply the transport traffic analysis method to detecting automated attacks against
legitimate web sites, including CAPTCHA solvers, vulnerability scans, etc.

Finally, we wish to deploy our technique in a real world environment. The results of such live
testing will hence further validate and refine our methodology for prediction and calculate actual
resource overhead, and permit comparison against other approaches.

5.4 Summary
This thesis shows that it is indeed possible to characterize abusive infrastructure by mining
features of the packet transport header and packet timings within a flow in conjunction with
supervised learning. The summary of our experimental results are listed below:

• Looking at redirection types we saw legitimate sites redirected using 3xx status codes
87% of the time as compared to 73% from malware and 88% from the honeypot listed
sites.

• We conducted an overhead experiment to see how our collection agent compared to Net-
flow overhead. Using 2M packets as our dataset our agent took 1.83 seconds and the
Netflow agent took 1.19 seconds.

• From our dataset we found that continental host distribution varies little among abusive
and legitimate sites. Also, North America dominates across all of our population sets
with 50–52% of the hosts.

• Average redirection chain lengths for both legitimate and abusive sites were fairly close.
The Alexa listed hosts averaged 1.30, malware/phishing sites averaged 1.29, and spam
averaged 1.16.

55

• We found that per-device redirection is common. An investigation of the top 20,000 Alexa
listed sites show that at least 20% employ at least one type of user-agent redirection. In
addition, 40% of the sites return different content depending on advertised browser.

• We found that general redirection is common. Using only one advertised browser type,
we found that legitimate sites (from Alexa) redirected an average of 30% and abusive
sites an average of 18%.

• Using the features from Netflow as described by RB-Seeker’s [5] experiment (duration,
interflow duration, and bytes) we found that using our datasets the distribution of legit-
imate and abusive flows were not sufficiently discriminative. This tells us that Netflow
features are too coarse-grained to be used in our classification approach.

• Our results were similar across all of our vantage points. Our f-score calculations show
that the variability was no larger than .02 across any vantage by host population.

• The experiment to see if our approach will classify a legitimate host as abusive, due to
high levels of congestion, resulted in a classification performance accuracy greater than
90%.

• Our methodology detects 94% for URLs collected by our honeypot and 87% for mal-
ware/phishing URLs collected from two well-known blocklists. The honeypot results
show a false positive rate of 3% and 9–11% for malware and phishing URLs. These re-
sults were found using the C4.5 decision tree classification algorithm.

While the long-term effect of our technique on the adversary remains to be seen, we anticipate
our system having positive net benefit in the security arms race.

56

APPENDIX A:
Classification Analysis Results

Vantage Point #1: hermes.cmand.org

Table A.1: VP1 Alexa Vs Externals: Confusion Matrix

Method TP FP FN TN
Bayes 6186 4407 2531 14996
Decision Tree 6044 2032 2673 17371

Table A.2: VP1 Alexa Vs Externals: Accuracy Results

Method Accuracy Standard Error
Bayes 0.753 0.004
Decision Tree 0.833 0.002

Table A.3: VP1 Alexa Vs Externals: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.710 0.773 0.584 0.856
Decision Tree 0.693 0.895 0.748 0.867

Table A.4: VP1 Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2869 2906 1438 16497
Decision Tree 3495 621 812 18782

Table A.5: VP1 Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.817 0.004
Decision Tree 0.940 0.001

57

Table A.6: VP1 Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.666 0.850 0.497 0.920
Decision Tree 0.811 0.968 0.849 0.959

Table A.7: VP1 Random Alexa Vs External: Confusion Matrix

Method TP FP FN TN
Bayes 5910 4222 2807 14243
Decision Tree 5090 1765 3627 16700

Table A.8: VP1 Random Alexa Vs External: Accuracy Results

Method Accuracy Standard Error
Bayes 0.741 0.002
Decision Tree 0.802 0.002

Table A.9: VP1 Random Alexa Vs External: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.678 0.771 0.583 0.835
Decision Tree 0.584 0.904 0.743 0.822

Table A.10: VP1 Random Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2820 3034 1487 15431
Decision Tree 3406 666 901 17799

Table A.11: VP1 Random Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.801 0.002
Decision Tree 0.931 0.002

58

Table A.12: VP1 Random Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.655 0.836 0.482 0.912
Decision Tree 0.791 0.964 0.836 0.952

Vantage Point #2: ralph.cmand.org

Table A.13: VP2 Alexa Vs Externals: Confusion Matrix

Method TP FP FN TN
Bayes 6145 4685 2660 14826
Decision Tree 5971 1793 2834 17718

Table A.14: VP2 Alexa Vs Externals: Accuracy Results

Method Accuracy Standard Error
Bayes 0.741 0.003
Decision Tree 0.837 0.002

Table A.15: VP2 Alexa Vs Externals: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.698 0.760 0.567 0.848
Decision Tree 0.678 0.908 0.769 0.862

Table A.16: VP2 Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2903 2886 1457 16625
Decision Tree 3533 665 827 18846

59

Table A.17: VP2 Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.818 0.004
Decision Tree 0.937 0.002

Table A.18: VP2 Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.666 0.852 0.501 0.919
Decision Tree 0.810 0.966 0.842 0.958

Table A.19: VP2 Random Alexa Vs External: Confusion Matrix

Method TP FP FN TN
Bayes 5736 4295 3069 14209
Decision Tree 5446 2057 3359 16447

Table A.20: VP2 Random Alexa Vs External: Accuracy Results

Method Accuracy Standard Error
Bayes 0.730 0.002
Decision Tree 0.802 0.002

Table A.21: VP2 Random Alexa Vs External: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.651 0.768 0.572 0.822
Decision Tree 0.619 0.889 0.726 0.830

Table A.22: VP2 Random Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2878 2998 1482 15506
Decision Tree 3499 619 861 17885

60

Table A.23: VP2 Random Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.804 0.002
Decision Tree 0.935 0.002

Table A.24: VP2 Random Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.660 0.838 0.490 0.913
Decision Tree 0.803 0.967 0.850 0.954

Vantage Point #3: bob.cmand.org

Table A.25: VP3 Alexa Vs Externals: Confusion Matrix

Method TP FP FN TN
Bayes 6490 4817 2670 14589
Decision Tree 6431 2140 2729 17266

Table A.26: VP3 Alexa Vs Externals: Accuracy Results

Method Accuracy Standard Error
Bayes 0.738 0.001
Decision Tree 0.830 0.002

Table A.27: VP3 Alexa Vs Externals: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.709 0.752 0.574 0.845
Decision Tree 0.702 0.890 0.750 0.864

61

Table A.28: VP3 Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 3058 3066 1329 16340
Decision Tree 3504 633 883 18773

Table A.29: VP3 Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.815 0.002
Decision Tree 0.936 0.002

Table A.30: VP3 Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.697 0.842 0.499 0.925
Decision Tree 0.799 0.967 0.847 0.955

Table A.31: VP3 Random Alexa Vs External: Confusion Matrix

Method TP FP FN TN
Bayes 5903 4447 3257 14232
Decision Tree 5583 1969 3577 16710

Table A.32: VP3 Random Alexa Vs External: Accuracy Results

Method Accuracy Standard Error
Bayes 0.723 0.002
Decision Tree 0.801 0.002

Table A.33: VP3 Random Alexa Vs External: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.644 0.762 0.570 0.814
Decision Tree 0.609 0.895 0.739 0.824

62

Table A.34: VP3 Random Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2877 3386 1510 15293
Decision Tree 3426 670 961 18009

Table A.35: VP3 Random Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.788 0.003
Decision Tree 0.929 0.002

Table A.36: VP3 Random Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.656 0.819 0.459 0.910
Decision Tree 0.781 0.964 0.836 0.949

Vantage Point #4: woland.cmand.org

Table A.37: VP4 Alexa Vs Externals: Confusion Matrix

Method TP FP FN TN
Bayes 6164 4715 2663 14757
Decision Tree 5929 1887 2898 17585

Table A.38: VP4 Alexa Vs Externals: Accuracy Results

Method Accuracy Standard Error
Bayes 0.739 0.003
Decision Tree 0.831 0.003

Table A.39: VP4 Alexa Vs Externals: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.698 0.758 0.567 0.847
Decision Tree 0.672 0.903 0.759 0.859

63

Table A.40: VP4 Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2726 2821 1462 16651
Decision Tree 3274 676 914 18796

Table A.41: VP4 Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.819 0.003
Decision Tree 0.933 0.002

Table A.42: VP4 Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.651 0.855 0.491 0.919
Decision Tree 0.782 0.965 0.829 0.954

Table A.43: VP4 Random Alexa Vs External: Confusion Matrix

Method TP FP FN TN
Bayes 5812 4367 3015 14222
Decision Tree 5414 1940 3413 16649

Table A.44: VP3 Random Alexa Vs External: Accuracy Results

Method Accuracy Standard Error
Bayes 0.731 0.002
Decision Tree 0.805 0.002

Table A.45: VP4 Random Alexa Vs External: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.658 0.765 0.571 0.825
Decision Tree 0.613 0.836 0.736 0.830

64

Table A.46: VP4 Random Alexa Vs Spam: Confusion Matrix

Method TP FP FN TN
Bayes 2719 2979 1469 15610
Decision Tree 3269 669 919 17920

Table A.47: VP4 Random Alexa Vs Spam: Accuracy Results

Method Accuracy Standard Error
Bayes 0.805 0.002
Decision Tree 0.930 0.002

Table A.48: VP4 Random Alexa Vs Spam: Statistics

Method Sensitivity Specificity PPV NPV
Bayes 0.649 0.840 0.477 0.914
Decision Tree 0.781 0.964 0.830 0.951

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX B:
Congestion Experiment Results

Table B.1: Results from Congestion Experiment

Method TP FP FN TN
Bayes 23664 306 3526 26884
Decision Tree 27066 95 124 27095
SVM 21868 0 5322 27190

Table B.2: Congestion Experiment: Accuracy Results

Method Accuracy Standard Error
Bayes 0.930 0.002
Decision Tree 0.996 0.000
SVM 0.902 0.001

67

Table B.3: VP1 - Top 5 Features Used for Classification at Specified Upload Rates

50KB/s 150KB/s >200KB/s
#1 Min Receiver Window Min Receiver Window Min Receiver Window
#2 3WHS 3WHS # SRC PKTS
#3 # SRC PKTS # SRC PKTS 3WHS
#4 # DST PKTS # DST PKTS # DST PKTS
#5 Total Duration Total Duration # DST Retransmits

Table B.4: VP2 - Top 5 Features Used for Classification at Specified Upload Rates

100KB/s 250KB/s >500KB/s
#1 Min Receiver Window Min Receiver Window Min Receiver Window
#2 3WHS RTT 3WHS
#3 # SRC PKTS Total IDLE Time Total IDLE Time
#4 Total Duration Total Duration Total Duration
#5 # DST PKTS 3WHS RTT

Table B.5: VP3 - Top 5 Features Used for Classification at Specified Upload Rates

100KB/s 250KB/s >500KB/s
#1 Min Receiver Window Min Receiver Window Min Receiver Window
#2 3WHS Total Duration Total IDLE Time
#3 # SRC PKTS # SRC PKTS Total Duration
#4 Total Duration Total IDLE Time Jitter
#5 # DST PKTS 3WHS # SRC PKTS

68

REFERENCES

[1] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Félegyházi, C. Grier, T. Halvor-
son, C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M. Voelker, and
S. Savage, “Click trajectories: End-to-end analysis of the spam value chain,” in Proceed-
ings of the 2011 IEEE Symposium on Security and Privacy, SP ’11, (Washington, DC,
USA), pp. 431–446, IEEE Computer Society, 2011.

[2] R. Beverly and K. Sollins, “Exploiting transport-level characteristics of spam,” in Pro-
ceedings of the Fifth Conference on Email and Anti-Spam (CEAS), Aug. 2008.

[3] G. Kakavelakis, R. Beverly, and J. Young, “Auto-learning of SMTP TCP Transport-Layer
Features for Spam and Abusive Message Detection,” in Proceedings of the 25th USENIX
Large Installation Systems Administration Conference (LISA), Dec. 2011.

[4] T. Ouyang, S. Ray, M. Rabinovich, and M. Allman, “Can network characteristics detect
spam effectively in a stand-alone enterprise?,” in Proceedings of the 12th Conference on
Passive and Active Network Measurement, Mar. 2011.

[5] X. Hu, M. Knysz, and K. G. Shin, “Rb-seeker: Auto-detection of redirection botnets,” in
Proceedings of 16th Annual Network and Distributed System Security Symposium, 2009.

[6] B. Claise, “Cisco Systems NetFlow Services Export Version 9.” RFC 3954 (Informa-
tional), Oct. 2004.

[7] J. Fontelles and H. Winkler, “Directive 2006/24/EC,” Official Journal of the European
Union, vol. L, no. 105, pp. 54–63, 2006.

[8] L. Feiler, “The legality of the data retention directive in light of the fundamental rights
to privacy and data protection,” European Journal of Law and Technology, vol. 1, no. 3,
2010.

[9] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker, “Spamscatter: characterizing
internet scam hosting infrastructure,” in Proceedings of 16th USENIX Security Sympo-
sium, (Berkeley, CA, USA), pp. 10:1–10:14, USENIX Association, 2007.

[10] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command and control chan-
nels in network traffic,” in Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), February 2008.

[11] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov, “Spamming botnets: sig-
natures and characteristics,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 171–
182, 2008.

[12] P. Mockapetris, “Domain Names - Implementation and Specification.” RFC 1035 (Stan-
dard), Nov. 1987.

69

[13] C. Cortes and V. N. Vapnik, “Support vector networks,” vol. 20, pp. 1–25, 1995.

[14] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum, “Botgraph: large scale
spamming botnet detection,” in NSDI’09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pp. 321–334, 2009.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering analysis of network traf-
fic for protocol- and structure-independent botnet detection,” in USENIX Security Sympo-
sium, pp. 139–154, 2008.

[16] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for
network intrusion detection,” in Proceeding os fhte 2010 IEEE Symposium on Security
and Privacy, (Washington, DC, USA), IEEE Computer Society, 2010.

[17] S. Russell and P. Norvig, “Artificial intelligence a modern approach,” pp. 495–503, Pear-
son Education Inc, March 2010.

[18] E. Alpaydin, “Introduction to machine learning,” pp. 17–38, 173–196, 331, MIT Press,
2004.

[19] I. Androutsopoulos, K. Koutsias, V. Chandrinos, G. Paliouras, and C. Spyropoulos, “An
evaluation of naive bayesian anti-spam filtering,” in Proceeding of the Workshop of Ma-
chine Learning in the New Information Age, pp. 9–17, 2000.

[20] E. Blanzieri and A. Bryl, “A survey of learning-based technique of email spam filtering,”
in Artifical Intelligence Review, vol. 29, pp. 63–92, March 1993.

[21] J. R. Quinlan, “C4.5: Programs for machine learning,” Morgan Kaufmann Publishers,
1993.

[22] J. R. Quinlan, “Induction of decision trees,” in Machine Learning 1, pp. 81–106, Kluwer
Academic Publishers, 1986.

[23] “Malware Domain Black Hole DNS Sinkhole,” 2012. http://www.malwaredomains.
com/.

[24] “Malware domain list,” 2012. http://www.malwaredomainlist.com/.

[25] “Phish tank,” 2012. http://www.phishtank.com/.

[26] Alexa, “Top 1,000,000 sites,” 2012. http://www.alexa.com/topsites.

[27] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and M. Kojo, “An experimen-
tal study of home gateway characteristics,” in Proceedings of the 10th annual conference
on Internet measurement, IMC ’10, (New York, NY, USA), pp. 260–266, ACM, 2010.

[28] M. Zalewski, “Passive OS fingerprinting tool,” 2003.
http://lcamtuf.coredump.cx/p0f.shtml.

70

[29] A. Ramachandran and N. Feamster, “Understanding the network-level behavior of spam-
mers,” in Proceedings of ACM SIGCOMM, Sept. 2006.

[30] J. Demšar, B. Zupan, G. Leban, and T. Curk, “Orange: From experimental machine learn-
ing to interactive data mining,” in Knowledge Discovery in Databases: PKDD 2004,
vol. 3202, pp. 537–539, 2004.

[31] K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Proceedings of
the ninth international workshop on Machine learning, ML92, (San Francisco, CA, USA),
pp. 249–256, Morgan Kaufmann Publishers Inc., 1992.

[32] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser, “Detecting spammers with
snare: spatio-temporal network-level automatic reputation engine,” in Proceedings of the
18th conference on USENIX security symposium, 2009.

[33] X. Hu, M. Knysz, and K. Shin, “Measurement and analysis of global ip-usage patterns of
fast-flux botnets,” in INFOCOM, 2011 Proceedings IEEE, pp. 2633 –2641, Apr. 2011.

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1.” RFC 2616 (Draft Standard), June 1999. Up-
dated by RFCs 2817, 5785.

[35] Maxmind, “Maxmind ip geolocation,” 2012. http://www.maxmind.com.

[36] Symantec, “Tunable network parameters on linux,” 2011. http://www.symantec.com/
business/support/index?page=content&id=HOWTO64299.

[37] K. Kira and L. A. Rendell, “The feature selection problem: Traditional methods and a
new algorithm,” in AAAI-92 Proceedings, (Washington, DC, USA), Association for the
Advancement of Artifical Intelligence, 1992.

[38] K. Thompson, G. Miler, and R. Wilder, “Wide-area internet traffic patterns and character-
istics,” IEEE Network, vol. 11, pp. 10–23, 1997.

[39] D. Miller, “Softflowd: A software netflow probe,” 2012. http://www.mindrot.org/
projects/softflowd/.

[40] M. Fullmer and S. Romig, “The OSU Flow-tools Package and Cisco NetFLow Logs,” in
Proceedings of the 14th USENIX Large Installation Systems Administration Conference
(LISA), Dec. 2000.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Directory, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

7. Dr. Robert Beverly
Naval Postgraduate School
Monterey, California

8. Dr. Joel Young
Naval Postgraduate School
Monterey, California

73

